具有间断系数的Riemann边值问题 ON RIEMANN BOUNDARY PROBLEM WITH DISCONTINUOUS COEFFICIENT 刘士强 Liu Shiqiang 1 first-author 宁夏大学 宁夏大学 < 正 > 关于具有问断系数的Riemann边值问题,[1]和[2] 用不同的方法研究了具有第一类间断点的系数;和[2]研究了具有整数阶零点和极点的系数;[3] 研究了:1)假设L是一条光滑封闭曲线,L上按L的正方向排列的点c 1 ,c 2 ,…,c n 把L分为n段弧c k-1 c k (k=1,2,…,n,c o =c n )。假没G(t)在弧c k-1 c k 上任意包含c k-1 而不包含c k 的闭部分上满足H条件且处处不为零,在弧c k-1 c k 上的c k 附近有G(t)=G k (t)·(t-c k ) rk ln sk (t-c k )。(这里,r k 和s k 是实数,G k (t)在c k 附近(包括c k )满足H条件且G k (c k -0)≠0)。2)设L是由有限 In this paper, We discuss and solve the Riemann boundary problem Φ + (t)=G(t)Φ - (t)+g(t), where G(t) satisfy Hlder conditions and differ from zero on any closed part of not include c k on L, there are G(t)=G k (t)(t-c k ) r k ln s k ·(t-c k )for t on L near c k (t≠c k , k=1, 2, …, n), when L is a closed smooth curves, r k =r k (1) =α k (1) +iβ k , s k =s k (1) =σ k (1) +iτ k near c k on the arc c -1 c k , r k =r k (2) =α k (2) +iβ k , s k =s k (2) =σ k (2) +iτ k near c k on the arc c k c k+1 , α k (2) , α k (2) , β k , σ k (1) , σ k (2) , τ k are all real numbers; when L is a finite number of non-intersecting open smooth arcs, c k is end point of L, r k , s k are all real numbers; and G k (t)∈H 0 near c k on L and G k (c k ±0)≠0、 1983-02-01 2021-04-01 2