关于C n 中奇异积分的两个问题 TWO PROBLEMS ON SINGULAR INTEGRALS IN C n 马道玮 Ma Daowei first-author <正> 自陆启铿和钟同德研究了Bochner—Mattinclli的积分表示[1]的边界性质[2]以后,关于闭光滑流形上的奇异积分的研究已有不少。研究了边值的连续特性[3]。孙继广则得到了闭光滑流形上的奇异积分的Poincaré-Bertrand置换公式[5]。钟同德研究了特征流形上的奇异积分[4],并给出了相应的Poincaré-Bertrand置换公式[6]。(但是,作者认为,这个公式的证明中庄交换积分次序时有疏忽之处。)本文的目的之一是讨论闭光滑流形上的一个奇异积分的连续特性(§1的定理),这个积分在讨论奇异积分方程的正则化时是常遇到的。本文的第二个目的是对特征流形上的奇异积分的Poincaré-Bertrand置换公式给出个一不同于[6]中方法的证明。 Since Lu Qikeng and Zhong Tongde studied the boundary property of Bochner-Martinelli’s integral representation[2],there has been a lot of work on singular integals on closed smooth manifolds. Zhong further considered singular integrals on characteristic manifolds and gave the corresponding Poincaré-Bertrand formula[6] . In the first part of this paper, we prove the continuity property of a singular integral on a closed smooth manifold, one often meets this integral when considering the regularization of singular integral equations. Let Ω denote a (2n-1)-dimensional closed smooth orientable manifold of class C 2 in 2n-dimensional Euclidean space R 2 n, K(ξ,η) denote Bochner-Martinelli kernel and dSe be the volumn element of Ω. The function φ(ξ,η) is defined by K(ξ,η) = φ(ξ,η)dS ε . The following theorm is proved. Theorem. Suppose f(η) ∈H (α,Ω), 0 < α≤1, ζ∈Ω, define g(ξ)= |ξ-ξ| 2n-1 f(η)φ(ξ,η)K(η,ζ), ξ∈Ω, then g(ξ)∈H(α/2, Ω). In the second part, we prove the Pomcaré-Bertrand formula (34), where Ω= Ω 1 ×Ω 2 , Ω 1 and Ω 2 are closed smooth orientable manifolds of dimension (2n-1) and (2m-1) in Euclidean spaces of dimension 2n and 2m repectively, ×Ω 2 ×Ω 1 ×Ω 2 ). This formula was first given by Znong Tongde in 1980[6]. (But, the author thinks, there are some flaws in its proof.) We reprove it in a way which is entirely different from that given in [6] . 1983-03-01 2021-04-01 3