扫 描 看 全 文
[1]徐超江.一类双曲型拟微分算子的Cauchy问题的基本解[J].武汉大学学报(自然科学版),1983(01):66-90.
Xu Chaojiang. ON THE FUNDAMENTAL SOLUTIONS FOR THE CAUCHY PROBLEM OF A CLASS OF HYPERBOLIC PSEUDO DIFFERENTIAL OPERATORS[J]. 1983,(1):66-90.
<,正,>, 引言最近,齐民友在文献[2]中研究了一类一阶奇异拟微分方程 D,t,u+A(t,x,D,x,)u+1╱(t,m,)B(x,D,x,)u=f (0.1) 他指出,当A,B满足一定的条件时,方程(0.1)可以转化成系数不含奇异性的方程 D,t,v+A(t,x,D,x,)v=h (0.2) 在那里的主要工作是对充分大的t构造Cauchy问题: 的拟基本解(Parametrix)。本文把(0.3)的问题放到具有对角型主部的一阶方程组中去考虑,而且构造精确的基本解。从而,可以对一类形如(0.1)的系数含奇异点的高阶方程构造其基本解。
In this article, we consider a class of hyperbolic pseudo-differential equations with singular coefficient, set L=D,t,+A(t, x, D,x,)+1/(t,l,)B(t, x, D,x,)+C(t, x, D,x,) (1) where both A and B are one order diagonal operators system, and C is zeroth order operator. By transformation of variables with singularity, (1) can be re duced to operators system L=D,t,-λ(t, x, D,x,)+f(t, x, D,x,) (2) where If operators(2) satisfy the following conditions: 1. λ,j,(t, x, ξ) (j=1, 2, …, m) are real and λ,j,(t, x, D,x,) proper pseudo differential operators; 2. Hamilton field defined by λ,j,(t, x, ξ) determines a 1 parameter group of diffeomorphism; 3. Lagrange manifold defined by λ,j,(t, x, ξ) satisfies the following conditions of quantization: a) θ=0, where θ is the cohomology class of ξ·dx in H,1,(Λ, R); b) 1/4α∈H,1,(Λ, Z), i. e. o=α∈H(Λ, Z,4,). where α is Moslov index; 4. |λ,j,-λ,k,|≥c,<,ξ,>,(c,>,0, j≠k) then there exists a unique E(t)∈B,∞,(R,t, L,o,) such that Hence we get the fundamental solutions of Cauchy problem of (1). In addition, we discuss a class of high order equations which can be reduced to equation system and construct its fundamental solutions; coefficint here are all with singularity, but it does not propagate. The case of one equation of one order has been well discussed by M. Y. Chi in [2].
0
浏览量
47
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621