Banach空间类上的序结构Ⅱ THE ORDERING STRUCTURE ON BANACH SPACES Ⅱ 赵俊峰 Zhao Junfeng first-author 设X,Y是Banach空间,在Edgar序关系下X < Y意味着X=ηT **-1 [Y],其中求交是对一切有界线性算子T:X→Y而取的,我们用这一定义研究空间J(η,l p )(1 < p < ∝)和J(η),这篇文章的主要结果是: (ⅰ) J(η,l p )=J(η)(1 < p < ∝),即J(η,l p )(1 < p < ∝)与J(η)是在同一等价类内。 (ⅱ)(η,l p ) < J(η,l ∞ )。 (ⅲ) 特征化了J(η,l 2 )的第二共轭空间J(η,l 2 ) ** . Suppose X, Y are Banach spaces. Under Edgar ordering X < Y means that X=∩T **-1 [Y] Where the intersection is taken over all bounded linear operators T: X→Y. We use this definition to study spaces J(η,l p )(1 < p < ∞) and J(η).The main results in this paper are the following: (ⅰ) We find that J(η,l p )(1 < p < ∞) are in the same eguivalent class with J(η), i. e. J(η,l p )=J(η)(1 < p < ∞). (ⅱ) J(η, l p ) < J(η,l ∞ ) (1 < p < ∞). (ⅲ) The bidual J(η,l 2 ) ** of the l 2 -valued long James Banaeh Space J(η,l 2 ) is Characterized 1985-03-01 2021-04-01 3