贝西科维奇集的豪斯道夫测度为无穷大 The Besicovitch Sets Have Infinite Hausdorff Measures 马际华 MA Jihua 1 first-author 武汉大学数学科学学院/非线性科学中心,湖北,武汉,430072 武汉大学数学科学学院/非线性科学中心,湖北,武汉,430072 School of Mathematical Science/Nonlinear Science Center, Wuhan University School of Mathematical Science/Nonlinear Science Center, Wuhan University 给定一个概率向量P =(p0 ,p1,… ,pm -1) (m≥ 2 ) ,贝西科维奇集B由单位区间中那些在m 进制展开 ,式中j(0≤j≤m - 1)出现的频率为pj((0≤j≤m - 1) )的点组成 ,已经知道它在任何量纲下的豪斯道夫测度非零即无穷 本文运用测度的微扰法证明了西科维奇集的豪斯道夫测度为无穷大 .更进一步 ,证明了西科维奇集在量纲h(t) =tsexp{ -c |logt|log|logt| }之下的豪斯道夫测度为无穷大 . For a fixed probability vector P=(p 0 ,p 1 ,…,p m-1)(m≥2),The Besicovitch set B is the set of points in the unit interval which contain j(0≤j≤m-1) in their madic expansions in the propotion p j ((0≤j≤m-1)); it is known that B has Hausodrff dimension-∑p j logp j logm, and its Hausdorff measures(under any gauge) are either zero or infinity. A kind of peturbation measures are employed to prove that the Besicovitch set has infinite Hausdorff measure in the dimension. 贝西科维奇集 豪斯道夫测度 量纲 测度的微扰 Besicovitch sets Hausdorff measures gauges peturbation of measures O189 国家自然科学基金!资助项目 (2 0 2 0 0 0 1 33) 2001-01-01 2021-04-01 1