一种随机指数级数的Borel点 BOREL POINTS OF ONE TYPE OF RANDOM EXPONENTIAL SERIES 孙道椿 Sun Daochun first-author 本文指出了半平面上的有限正级指数级数f(s)=sum from n=0 to ∞ b n e -λ n 与其导数和积分有公共Borel点的条件,并且在概率空间(Ω,A,P)上讨论了右半平面上的Steinhaus型ρ级正规增长的随机指数级数f(s,ω)=sum from n=0 to ∞ b n r n (ω)e -λ n 。证明了f(s,ω)几乎必然以虚轴上每一点it为ρ+1级无有限例外值的Borel点。从而部分的证实了余家荣在[1]中的猜想。 In this paper, we prove that if f(s, ω) =b n r n (ω)e -λns is Steinhaus regular random exponential series of order ρ in the half plane, then for any t∈R it is almost surely Borel point of order ρ+l of {(s,ω) without exceptional value and that if f(s)= b n e-λns is a exponential series of order ρ in the half plane then there in a common Borel point of the f(s) and its derivatives. 指数级数 Borel点 Steinhaus随机变量 正规增长 随机级数 exponential series Borel point Steinhaus random variable regular growth random series 武汉大学科学基金 1988-03-01 2021-04-01 3