具有csc(t-t o )/α核的奇异积分方程 THE SINGULAR INTEGRAL EQUATIONS WITH THE KERNEL csc(t-t 0 )/a 路见可 Lu Jianke Wang Xiaolin first-author 王小林 < 正 > 关于复平面上的奇异积分方程的一般理论已有系统的研究(例如[1]),但从应用的观点看,对各种具有特殊奇异核的方程给出有效的解法仍是很有意义的。除具Cauchy核的特征方程的解已具有封闭形式的解答外,对于Hilbert核的方程也已有类似的结果[3] 。本文将考虑具csc(t-t o )╱a核的方程,并在积分曲线较一般的情况下,得到完全的解答。在[5]中,我们曾对这类奇异积分的反演得到一般的结果,本文是对它的推广。这一方程与周期Riemann边值问题[2] 有密切关系,因此仍从讨论与这一问题有关的引理开始。 In this paper, we have discussed and solved the singular integral equation (2.1) with the kernel csc(t-t o )/α, where L o is an arcwise smooth curve in the strip -απ < x≤απ, A(t), B(t), f(t) arc given functions εH o on L o and A(t)± ±B(t)≠0. The unknown function (t)εH* or eh(c 1 ,…,c q ). We reduce the equation (2. 1) to the equivalent periodic Riemann boundary problem (2.4) with the additional condition (1.3). Then we get the following conclusions. Let k be the index of the equation (2.1). When k > 0, the solution of (2.1) is (2.21) which contains k arbitrary constants. When k=0, the unique solution is (2.22). When k < 0, the equation has a unique solntion (2.22) if and only if the -k conditions (2.23)are satisfied. At last, we have considered the special case when L o is a closedarcwese smooth curve in the strip 0 < x≤απ. 1980-04-01 2021-04-01 4