关于Ω-稳定微分同胚满足公理A的一个准则 A CRITERION OF WHEN A Ω-STABLE DIFFEOMORPHISMS SATISFIES AXIOM A 邹应 Zou Ying first-author < 正 > 设M是-C ∞ 紧流形,f:M→M是C 1 微分同胚。所谓Smale公理A是指: (a)f的非游荡点集Ω(f)是双曲集。 (b)f的周期点集在Ω(f)中稠密,即Ω(f)=。 f称为是Ω-稳定微分同胚,如果在C 1 -拓扑下,存在f在Diff 1 (M)中的一个邻域N(f),使得对每一个g∈N(f),都有一个同胚映射h:Ω(f)→Ω(g)满足关系式:h·(f|Ω(f))=(g|Ω(g)·h。Smale在文[3]中给出了一个使f为Ω-稳定的充分条件:f满足公理A及不存在环。并猜测它也是必要条件。Palis在[4] 中证明了任何一个满足公理A的Ω-稳定的微分同胚必不存在环。很显然,现在剩下来的要回答的问题就是:Ω-稳定微分同胚是否满足公理A。 J. Frank proved a theorem: if f: M→M is a Ω—stable diffeomorphism, then all perodic points of f are hyperbolics and it exists a constant λ(0 < λ < 1)such that for each periodic point p, one has the following inequalities:there C p is the constant depending on p. In this paper we proved an assertion, if the C p in the above theorem is independent of p, then the nonwandering set Ω of f is hyperbalic. Therefore the f satisfies Axiom A. 1981-01-01 2021-04-01 1