关于概周期二元函数类的等价问题 ON THE EQUIVALENCE OF THE CLASSES OF ALMOST PERIODIC FUNCTIONS OF TWO VARlABLES 肖益民 Xiao Yimin first-author 1954年P.Lalage研究了无穷可微概周期一元函数类C E {M n },K E {M n }的等价问题。本文推广P.Lalage的主要结果,解决了无穷可微概周期二元函数类C E {M n },K E {Mn}的等价问题,并给出了C E {M n },K E {M n }成为可微类的充要条件。 In this paper, we investigate the equivalence of the classes of infinitely derivable almost periodic functions of two variables. We also give the necessary and sufficient condictions (NSC) for C E {M n }C E {M’n}, K E {M n }K E {M’n}, where {M n }, {M’n} are two (S) sequences. As applications, we obtain the NSC for C E {M n }, K E {M n } to be differentiable classes. Thus we extend the results of P. Lalague in [1] [2] to the case of two variables. 概周期函数 谱 无穷可微函数 等价性 可微类 almost periodic functions spectrum infinitely derivable functions equivalence differentiable class. 1988-01-01 2021-04-01 1