停时σ代数上两概率测度等价性的一点注记 A NOTE OF EQUIVALENCE OF TWO PROBABILITY MEASURES ON STOPPING TIME σ ALGEBRA 甘师信 Gan Shixin 1 first-author 武汉大学数学系 武汉大学数学系 Department of mathematics. Wuhan University Department of mathematics. Wuhan University 设P,Q为可测空间(Ω,F)上的两概率测度,(F ■ ) ■∈N 为F的单调上升的子α代数序列。J.Yeh在他的论著中用J-散度给出了在F ∞ =σ(∩■F n )上两概率测度等价的一个充分条件。本短文将这个结果推广到对任意(F ■ ) ■∈N 停时v,在v前σ代数F ■ 上仍成立。同时对连续参数集合R + =[0,∞),在一定的条件下亦有类似的结论。 Let(Ω, F) be a measurable space and P、Q probability measures on F. (F n ) n∈N is an increasing family of sub-σ-algebras of F. J. Yeh gives a sufficient condition for equivalence of P and Q on F ∞ =σ(■ F n ) in terms of J-divergence in the book written by him. We extend this result to F v where v is a stopping time with respect to (F n ) n∈N . Meanwhiln under certain conditions similar conclusions hold for continuous parameter set R=[0, ∞]. J-散度 停时 概率测度的等价性 拉东—尼古丁号数 左连续 拟左连续 J-divergence stopping time equivalence of probability measures Radon-Nikodym derivative left continuous quasi-left continuous 国家教委基金 1989-02-01 2021-04-01 2