不同材料拼接平面裂纹中的数学问题 THE MATHEMATICAL PROBLEMS OF BONDED PLANE MATERIALS WITH CRACKS 路见可 Lu Jianke (Chien-ke Lu) first-author <正> 在弹性力学中裂纹的研究是极其重要的。具一条直裂纹的平而问题是经典的。无限平面中具任意条裂纹的基本问题可化为唯一可解的奇异积分方程。周期裂纹的类似问题也可类似地解决。另一方面,不同材料的焊接问题我们在[4]中已有研究。两拼接半平面中具一条直裂纹的问题在某些特定的边界条件下在[5,6,7]中用Mellin变换研究过,但方法非常复杂,且不能推广到裂纹个数和形状都任意的一般情形,即使多个直裂纹位置任意时也是如此,更不必说拼接线是封闭曲线的情况。 The plane crack problem of an elastic plane bonded by two half-planes with different isotropic materials is solved by means of method of analytic functions and singular integral equations, Both the number and the shape of these smooth cracks are arbitrary, some of them to be located in one halfplane while the others in the other. 1982-02-01 2021-04-01 2