摹矩阵连乘积并行计算 ON PARALLEL COMPUTATION OF MODULO-MATRIX CHAIN PRODUCTS 费浦生 Fei Pusheng Zheng Hueiyao first-author 郑慧娆 本文讨论了摹矩阵连乘积M 1 M 2 …M q 的并行计算问题,其中M 是 n -1 ×n 矩 阵,证明了如果n = min{N 0 ,…,n q },则从右至左计算M 1 …M , 从左至右计算M +1 …M q ,再将二者摹乘的计算方案是最优的。最优方案的并行计算量为 n ( sum from =1 to q-1 n - n + min(n 0 ,n 1 } In this paper, the problem of the efficient parallel computation of modulo-matrix chain products M 1 M 2 …M q is considered. It points out that the policy is optimal if n s = min {n i } and the optimal cost is o < f < q n n i -n + min{n o ,n q } . 摹矩阵 并行计算 嘉量原理 外积算法 modulo-matrix parallel computation jar-matrix principle outer product algorithm。 1989-01-01 2021-04-01 1