Z m 上一类线性群的性质 THE PROPERTIES OF SOME LINEAR GROUPS ON Z m 黄本文 Huang Benwen 1 first-author 武汉大学数学系 武汉大学数学系 Department of Mrthematics,Wuhrn University Department of Mrthematics,Wuhrn University 本文用较简便的方法给出了 CL(n,Z m )的直积分解,算出了它的阶,对其性质作了较详细的讨论,对[3]中关于 GL(2,Zp)的有些性质作了推广,证明了 GL(2,Z 2λ )是可解群,本文还证明了 GL(n,Zp)可解的充要条件是 SL(n,Zp)可解,给出了 GL(n,Zp)和 SL(n,Zp)的生成元;最后证明了 PSL(2,Zp)(p > 3)和 PSL(n,Zp)(n > 3)为单群。 In this paper,the following theorems are proved: 1)If m=m 1 m 2 ,(m 1 ,m 2 )=1,then GL(n,z m )=GL(n,z m 1 )×GL(n,z m 2 ) 2)If m=p 1 λ 1 p 2 λ 2 …p t λ t ,then |GL(n,z m )|=[p k n 2 λ k (n(1+n))/2 ·(p k i -1)] 3)|GL(n,z m )/SL(n,z m )|=(m)——Euler function. 4)GL(2,z 2 λ ) is solvable group. 5)GL(n,z p )is solvable group if and only if SL(n,z p ) is solvable group. 6)H= ,r p-1 =1(mod p) then,GL(n,z p )=〈H,R〉,SL(n,z p )=〈H〉. 7)PSL(2,z p )(p > 3)and PSL(n,z p )(n > 3) are finite simple groups. 直积 可解群 同构 极大正规子群 本原根 有限单群 Direct product Solvable group isomorphism Maximal normal subgroup Primitive root Finite simple group 1990-02-01 2021-04-01 2