两个参数的递推关系的解公式 A FORMULA OF SOLUTION FOR A KIND OF RECURRENCE RELATION WITH TWO PARAMETERS 余长安 Yu Chang’an 1 first-author 武汉大学数学系 武汉大学数学系 Department of Mathematics,Wuhan University Department of Mathematics,Wuhan University 1985年,乐茂华在《数学学报》第三期上研讨过只含一个参数的递推式的解的结构。本文将研究依赖于两个参数的递推关系的解,得到了具有两个参数,而且 p 可为等于或大于2的任意整数,n 可为任意非负整数的递推关系(A)的一般解的一个明显的表达形式,使得上述结果成为其一个特殊情况。 In this paper,the solution for a kind of recurrence relation with two parameters u ij =∑ p-2 λ=0 a (p-1)-λ u (i-1-λ) j +a 0 u i-n j-1 (i≥p-1+nj,j=0,1,…) u λ,0 =c λ (λ=0,1,…,p-2),u i,j =0(j < 0,or j≥1 and i < p-1+nj,i=0,1…) (where p≥2,n≥0,a k (k=0,1,…,p-1)and c λ (λ=0,1,…p-2)are arbitrary constants)is given by an explicit formula u i·j ={∑ p-2 λ=0 {∑ λ k=0 {F[(i-k-nj-(p-1)),j]}a λ+1-k }c λ }a 0 j (i=0,1,2,"",j=0,1,"",n≥0) This consequence is all of certain meaning in theory and practice. 递推关系 归纳法 叠加原理 明显解公式 两个参数 recurrence relations induction superposition principle an explicit formula of solution two parameters 1990-01-01 2021-04-01 1