关于N-p=P 3 的解数的下界估计 ON THE LOWER BOUND OF THE NUMBER OF SOLUTIONS OF N-P=P 3 吴杰 Wu Jie 1 first-author 武汉大学数学系 武汉大学数学系 Department of mathematics,Wuhan University Department of mathematics,Wuhan University 设 N 是充分大的正偶数,p 是素数,P 3 是素因子个数不超过3的整数,那么满足N-p=P 3 的 p( < N)的个数不小于0.67 C N N/(log 2 N)log logN,其中 C N 是与 N 有关的常数。别人所得到的相应下界中没有因子 log logN. let N be a large positive even integer,p be a prime,and let P,denote an integer with at most r prime factors counted with multiplicity.Then there exists a constantαsuch that |{p;p < N,N-p=P 3 }|≥αC N N/(log 2 N), where C N =(1-1/((p-1) 2 ))(p-1)/(p-2) Richer([16]),Eugene K.—S.Ng.([3] )and Shao([7])obtain a=13/3,6.173 and 6.82,respectively.In this paper,we improve their results and prove that |{p;p < N,N-p=P 3 }|≥0.67 C N N/(log 2 N)loglogN. 整数的素因子个数 加权筛法 M(?)bius 函数 素数定理 number of prime factors of an integer weiglhed sieve method M(?)bius function prime number theorem 1990-03-01 2021-04-01 3