改良Ahlfors不等式 IMPROVEMENT OF Ahlfors INEQUALITY 孙道椿 1 first-author 武汉大学数学系 武汉大学数学系 本文引进了区域的被割率及曲线的被覆率概念,从而对Ahlfors不等式中的常数h作了明确地估计,即得到p + (F) > p(F 0 )S-64δ —3 L由这个改良不等式,可以改良一系列定理,可以证明代数体函数存在充满圆序列。 In this paper, we estimate for the constant h in Ahlfors fundamental ine- quality. Theorem; Suppose that F 0 is a domain on the unit sphere V, and that the boundary of F 0 are different q points, where the spherical distance of arbi- trary two points is not smaller thanδ∈(0, 1/2), then for any connected finite covering surface F, we have p+(F)≥p(F 0 )S-h(δ)L, where p(F) is the Euler characthristic of F, p+=max(0, p), S is the mean covering number of F 0 , L is the length of the relative boundary of F and is a constant which depends on d only. For example, we may take h(δ)=64δ -3 被割率 被覆率 相对边界 覆盖曲面 Ahlfors不等式 cut ratio covered ratio relative boundary covering surface Ahlfors inequality O174.51 国家自然科学基金资助项目(41275027;11504121) 1992-03-01 2021-04-01 3