一类6p n (p≠2,3)阶群的构造 THE STRUCTURES OF SOME GROUPS OF ORDER 6p n 黄本文 Huang Benwen 1 first-author 武汉大学数学系 武汉大学数学系 Department of Mathematies, Wuhan University Department of Mathematies, Wuhan University 利用可解群的性质.通过群的扩张理论,证明了 Sylowp-子群为循环群的6p·《p≠2,3)阶群:(1)p≠5:若p≡1(mod3)时,有8型,若p≡2(mod3)时,有4型.(2)p=5时有8型. In this paper, the following theorem is provea: Theorem The groups of order 6p 2 when sylowp——subgrcaps are cyclic groups have 1) p≠5:8 types when p≡1(mod3); 4 types when p≡2(mod3). 2) p=5:8 types. 可解群 循环群 Fitting 子群 正规化子 中心化子 Solvable group cyclic group fitting subgroup normaliger centraliger O152.1 1993-05-01 2021-04-01 5