软代数的Stone定理 STONE THEOREM FOR SOFT ALGEBRA 郑延履 Zheng Yanlu 1 first-author 武汉大学数学系 武汉大学数学系 Department of Mathematics,Wuhan University Department of Mathematics,Wuhan University 对于每一个正规软代数F,对应有一个准Boole环F.反之,每一个准Boole环R,对应有一个正规软代数R,且有=F,=R. M. H. Stone has shown that equivalence of Boolean algebras and Boolean rings. We have shown theorem:1) Let F= (F, ∨, ∧,’, 0, 1) be a normal soft algebra. Define F to be the algebra (F,+,·,0, 1 ),where a+b= (a ∨ b) ∧ (a’∨b’ ),a· b=a ∧ b. Then F is a quasi-Boolean ring.2) Let R= (R, +,·, 0, 1 ) be a quasi-Boolean ring,Define R to be the algebra(R, ∨,∧,’, 0,1 ) where a∨ b= (a+ 1 ) (b+ 1 ) + 1,a ∧ b=a· b,a’=a+ 1. Then R is a normal soft algebra.3) Given F and R as abore we have F=F,R=R. 正规软代数 准Boole环 软代数 O153 国家自然科学基金(61672102) 1994-03-01 2021-04-01 3