平面物自成像及阵列成像 SELF-IMAGING AND ARRAY IMAGING OF A PLANAR OBJECT 答孝义 Da Xiaoyi 1 first-author 王取泉 Wang Ququan 1 武汉大学物理学系 武汉大学物理学系 Department of Physics, Wuhan University Department of Physics, Wuhan University 首先用傅里叶光学关于角谱传播的概念重新认识和讨论了Miontgomery的自成像理论,然后又重新计算了Kalestynski无透镜阵列成像的全过程,发现和纠正了现行有关理论存在的若干问题;首次获得了阵列像的解析表达式和正确的成像条件.所得结果在几何光学近似下的合理解释以及阵列像的存在条件自动地符合Montgomery理论,这些事实支持了本文的结论. In this paper,Montgomery’s theory about self-imaging is re-examined from the point of view of the propagation of the angular spectra of an object in free space. We then re-consider the lensless multiple image formation of a single object by the Fresnel-Dirac sampling pioneered by A. Kalestynski and co-workers. Certain mistakes in the current theory have been pointed out and corrected. Thereby,we have obtained the analytical expression for the image array,to our knowledge,for the firSt time, and the existence condition of the array as well. The appropriate interpretation of the acquired image array in the ray optics limit,and the fact that the existence condition Of the image array automatically satisfies the Montgomery theory confirm are results. 泰伯效应 自成像 无透镜阵列像 菲涅耳-狄拉克取样 Talbot effect self-imaging lensless array imaging Fresnel-Dirac sampling O436.1 1994-03-01 2021-04-01 3