一类有限Abel群G的构造 STRUCTURE OF A CLASS OF FINITE ABELIAN GROUPS G 黄本文 Huang Benwen 1 first-author 武汉大学数学系 武汉大学数学系 Department of Mathematics, Wuhan University Department of Mathematics, Wuhan University 确定有限阶群的构造,是有限群理论的核心问题,本文从群G的自同构群间(G)入手,利用群G的自同构群A(G)的阶来刻划群G的构造,采用了一种较为简便的方法证明了下面的结果:定理设G是有限Abel群,若|A(G)|=27p(p为奇素数),于是1)当p=3时,G有43型,2)当p=5时,G有29型;3)当p=17时,G有14型,4)当p≠3,5,17时,G最多有45型. In this paper we have discussed structures of Abelian group G by order | A(G)| of automorphism group and have obtained all types of finite Abelian group G When the order of A(G) equals 27p (p is odd prime). The following theorem is proved:Theorem Let G be finite Abelian group, if |A(G) |= 27p(p is odd prime),then 1) G has 43 types when p=3;2) G has 29 types when p= 5;3) G has 14 types when p=17;4) G has no more than 45 typed when p3,5, 17. Abel群 自同构 群构造 Euler函数 Abel group Automorphism Structure of group Euler function O152.1 1994-03-01 2021-04-01 3