浏览全部资源
扫码关注微信
1. 华中师范大学计算机科学系
2. 华中师范大学计算机科学系,湖北,武汉,430079
纸质出版日期:2007-03-01,
移动端阅览
[1]宋婉娟,董才林,陈增照,张剑.运用反例基于识别的手写数字串分割[J].武汉大学学报(理学版),2007(03):301-304.
SONG WANJUAN, DONG CAILIN, CHEN ZENGZHAO, et al. Recognition-Based Method for Handwritten Numerical Strings Segmentation Trained with Negative Data. [J]. 2007, (3): 301-304.
[1]宋婉娟,董才林,陈增照,张剑.运用反例基于识别的手写数字串分割[J].武汉大学学报(理学版),2007(03):301-304. DOI:
SONG WANJUAN, DONG CAILIN, CHEN ZENGZHAO, et al. Recognition-Based Method for Handwritten Numerical Strings Segmentation Trained with Negative Data. [J]. 2007, (3): 301-304. DOI:
采用基于识别的分割方法进行手写数字串分割.在识别的过程中
运用反例样本估计分类器参数
实验数据表明
这种运用反例样本训练的分类器与没有经过反例样本训练的分类器相比
将提高拒识率到19%左右
从而保证了较高的识别率
验证了只有经过反例训练的分类器的输出结果才是可信赖的.
This paper used the recognition-based Method to solve the segmentation problem of handwritten numerical strings.In the segmentation process
to get classifier with better performance
negative data must be the necessary trained samples.The experiment results show that this method with negative data can get better refuse rate
which reaches 19 percent.During to the increase of refuse rate
the recognition accuracy also increases
validate that the outputs of the classifier trained with negative data is reliable.
数字串分割反例样本分类器
numerical strings segmentationnegative dataclassifier
0
浏览量
116
下载量
CSCD
关联资源
相关文章
相关作者
相关机构