Lp(μ,X)中的性质(U) PROPERTY (U) IN L p(μ,X) 石峰 Shi Feng 1 first-author 武汉大学数学系 武汉大学数学系 Department of Mathematics,Wuhan University Department of Mathematics,Wuhan University 证明了下面的两个结论:(1)Lp(μ,Y)是Lp(μ,X)的Chebyshev子空间的充要条件是Lq(μ,Y)是Lq(μ,X)的Chebyshev子空间(1≤p,q≤∞);(2)Lp(μ,Y)在Lp(μ,X)中具有性质(U)的充要条件是Lq(μ,Y)在Lq(μ,X)中有性质(U)(1≤p,q<∞).并且证明:若X自反,YX为闭子空间,则Y有性质(U)(或是Chebyshev子空间)可得出L1(μ,Y)在L1(μ,X)中有性质(U)(或是Chebyshev子空间) We get the following two main results:If Y is a closed subspace of Banach space X, then (1) L p(μ,Y) is the Chebyshev subspace of L p(μ,X) if and only if L q(μ,Y) is the Chebyshev subspace of L q(μ,X)(1≤ p,q≤∞.(2) L p(μ,Y) has property (U) in L p(μ,X) if and only if L q(μ,Y) has property (U) in L q(μ,X)(1≤p,q<∞) .And we also proved that if Y is a closed subspace of reflexive Banach space X and Y has property (U) (Chebyshev), then L p(μ,Y) has property (U) ( respectly, Chebyshev)in L p(μ,X) . proximinal子空间 Chebyshev子空间 性质(U) proximinal subspace Chebyshev subspace property (U) O177.2 国家自然科学基金(61672102) 1997-05-01 2021-04-01 5