1.长江师范学院 化学化工学院/重庆市无机特种功能材料重点实验室,重庆 408100
陈凤贵,男,博士,副教授,现从事功能性高分子复合材料的制备与性能研究。E-mail:fgchen@yznu.cn
纸质出版日期:2019-08-24,
收稿日期:2018-09-28,
扫 描 看 全 文
引用本文
陈凤贵,涂小寒,胡茜, 等.木质素增强水性聚氨酯性能研究[J].武汉大学学报(理学版),2019,65(4):377-382.
CHEN Fenggui,TU Xiaohan,HU Xi,et al.Properties Enhancement of Water-Borne Polyurethane by Lignin Introduction [J].J Wuhan Univ (Nat Sci Ed),2019,65(4):377-382.
陈凤贵,涂小寒,胡茜, 等.木质素增强水性聚氨酯性能研究[J].武汉大学学报(理学版),2019,65(4):377-382. DOI:10.14188/j.1671-8836.2019.04.009
CHEN Fenggui,TU Xiaohan,HU Xi,et al.Properties Enhancement of Water-Borne Polyurethane by Lignin Introduction [J].J Wuhan Univ (Nat Sci Ed),2019,65(4):377-382. DOI:10.14188/j.1671-8836.2019.04.009(Ch).
针对聚氨酯存在模量小且易老化等问题,利用木质素结构中富含芳香基团与酚羟基团的特点,通过水溶液混合制备木质素/水性聚氨酯复合材料,研究木质素填料及其含量对复合材料性能的影响。结果表明,适当添加木质素填料可以显著增强水性聚氨酯材料的机械性能与抗氧化性能。添加少量木质素有利于增强复合材料的机械性能,木质素含量为5%的复合材料具有最大的拉伸强度(26.82 MPa)、屈服应变(34.36)和断裂伸长率(3 600%),而进一步增加木质素含量则使复合材料断裂伸长率等机械性能下降,拉伸模量上升。同时,木质素还显著改进水性聚氨酯复合材料的抗氧化性能,含2%木质素的复合材料在紫外光照射72 h后的断裂伸长率仅下降39.9%,明显优于水性聚氨酯(下降78.1%)。
Herein, to enhance the multifunctional properties of water-borne polyurethane (WPU), water-soluble lignin containing abundant aromatic and phenolic hydroxyl group was incorporated into WPU via water solution blending. It is found that the low loading of lignin in WPU dramatically enhances the mechanical properties and antioxidant property. The yield stress, yield strain and elongation at break reach to 26.82 MPa, 34.36, 3 600% respectively for WPU composites containing 5% lignin. On the other hand, the further addition of the lignin results in the remarkable drop of yield strain, yield stress and elongation at break. Also, impressively, by lowering the drops of tensile stress, yield strain and elongation at break after UV irradiation, lignin filler significantly slows down the rate of photo-degradation and enhances antioxidant properties of WPU composites. More specifically, the elongation at break drops by 39.9% after 72 hours of intense UV light exposure, which is far lower than that of neat WPU with elongation at break reduced by 78.1%.
木质素水性聚氨酯复合材料机械性能抗氧化性能
ligninwater-borne polyurethanecompositemechanical propertyantioxidant property
KAUSAR A. Polyurethane composite foams in high-performance applications: A review [J]. Polymer-Plastics Technology and Engineering, 2018, 57(4): 346-369. DOI: 10.1080/03602559.2017.1329433http://dx.doi.org/10.1080/03602559.2017.1329433.
MAGANTY S, ROMA M P C, MESCHTER S J, et al. Enhanced mechanical properties of polyurethane composite coatings through nanosilica addition [J]. Progress in Organic Coatings, 2016, 90: 243-251. DOI: 10.1016/j.porgcoat.2015.10.016http://dx.doi.org/10.1016/j.porgcoat.2015.10.016.
CATETO C A, BARREIRO M F, OTTATI C, et al. Lignin-based rigid polyurethane foams with improved biodegradation [J]. Journal of Cellular Plastics, 2013, 50 (1): 81-95. DOI: 10.1177/0021955x13504774http://dx.doi.org/10.1177/0021955x13504774.
YANG L, PHUA S L, TOH C L, et al. Polydopamine-coated graphene as multifunctional nanofillers in polyurethane [J]. RSC Advances, 2013, 3 (18): 6377-6385. DOI: 10.1039/c3ra23307chttp://dx.doi.org/10.1039/c3ra23307c.
PHUA S L, YANG L, TOH C L, et al. Reinforcement of polyether polyurethane with dopamine-modified clay: The role of interfacial hydrogen bonding [J]. ACS Applied Materials & Interfaces , 2012, 4 (9): 4571-4578. DOI: 10.1021/am300947bhttp://dx.doi.org/10.1021/am300947b.
NORGREN M, EDLUND H. Lignin: Recent advances and emerging applications [J]. Current Opinion in Colloid & Interface Science, 2014, 19 (5): 409-416. DOI: 10.1016/j.cocis.2014.08.004http://dx.doi.org/10.1016/j.cocis.2014.08.004.
SMICHI N, MESSAOUDI Y, GARGOURI M. Lignocellulosic biomass fractionation: Production of ethanol, lignin and carbon source for fungal culture [J]. Waste and Biomass Valorization, 2018, 9 (6): 947-956. DOI: 10.1007/s12649-017-9859-3http://dx.doi.org/10.1007/s12649-017-9859-3.
QIAN Y, LOU H M, LIU W F, et al. Lignin—A promising biomass resource [J]. Tappi Journal, 2018, 17 (3): 125-141. DOI: 10.32964/TJ17.03.125http://dx.doi.org/10.32964/TJ17.03.125.
CALVO-FLORES F G, DOBADO J A. Lignin as renewable raw material [J]. ChemSusChem, 2010, 3 (11): 1227-1235. DOI: 10.1002/cssc.201000157http://dx.doi.org/10.1002/cssc.201000157.
GELLERSTEDT G. Softwood kraft lignin: Raw material for the future [J]. Industrial Crops and Products, 2015, 77: 845-854. DOI: 10.1016/j.indcrop.2015.09.040http://dx.doi.org/10.1016/j.indcrop.2015.09.040.
WANG X, JIANG C, HOU B, et al. Carbon composite lignin-based adsorbents for the adsorption of dyes [J]. Chemosphere, 2018, 206: 587-596. DOI: 10.1016/j.chemosphere.2018.04.183http://dx.doi.org/10.1016/j.chemosphere.2018.04.183.
CHEN F G, LIU W H, SHAHABAD I, et al. Sheet-like lignin particles as multifunctional fillers in polypropylene [J]. ACS Sustainable Chemistry & Engineering, 2016, 4: 4997-5004. DOI: 10.1021/acssuschemeng.6b01369http://dx.doi.org/10.1021/acssuschemeng.6b01369.
HE X Y, LUZI F, HAO X L, et al. Thermal, antioxidant and swelling behaviour of transparent polyvinyl (alcohol) films in presence of hydrophobic citric acid-modified lignin nanoparticles [J]. International Journal of Biological Macromolecules, 2019, 127: 665-676. DOI: 10.1016/j.ijbiomac.2019.01.202http://dx.doi.org/10.1016/j.ijbiomac.2019.01.202.
AVELINO F, de OLIVEIRA D R, MAZZETTO S E, et al. Poly(methyl methacrylate) films reinforced with coconut shell lignin fractions to enhance their UV-blocking, antioxidant and thermo-mechanical properties [J]. International Journal of Biological Macromolecules, 2019, 125: 171-180. DOI: 10.1016/j.ijbiomac.2018.12.043http://dx.doi.org/10.1016/j.ijbiomac.2018.12.043.
GILLET S, AGUEDO M, PETITJEAN L, et al. Lignin transformations for high value applications: Towards targeted modifications using green chemistry [J]. Green Chemistry, 2017, 19 (18): 4200-4233. DOI: 10.1039/c7gc01479ahttp://dx.doi.org/10.1039/c7gc01479a.
KIM H, LEE S. Electrical properties of graphene/waterborne polyurethane composite films [J]. Fibers and Polymers, 2017, 18 (7): 1304-1313. DOI: 10.1007/s12221-017-7142-7http://dx.doi.org/10.1007/s12221-017-7142-7.
GOGOI S, KARAK N. Biobased biodegradable waterborne hyperbranched polyurethane as an ecofriendly sustainable material [J]. ACS Sustainable Chemistry & Engineering, 2014, 2 (12): 2730-2738. DOI: 10.1021/sc5006022http://dx.doi.org/10.1021/sc5006022.
CHUNG H, WASHBURN N R. Modification of lignin via lewis acid catalyzed hydroxylation [J]. Polymer Preprints, 2011, 52(1): 63-64.
XUE B L, WEN J L, SUN R C. Lignin-based rigid polyurethane foam reinforced with pulp fiber: Synthesis and characterization [J]. ACS Sustainable Chemistry & Engineering, 2014, 2(6): 1474-1480. DOI: 10.1021/sc5001226http://dx.doi.org/10.1021/sc5001226.
DÖRRSTEIN J, SCHOLZ R, SCHWARZ D, et al. Effects of high-lignin-loading on thermal, mechanical, and morphological properties of bioplastic composites [J]. Composite Structures, 2018, 189: 349-356. DOI: 10.1016/j.compstruct.2017.12.003http://dx.doi.org/10.1016/j.compstruct.2017.12.003.
BHATTACHARYYA A R, SREEKUMAR T V, LIU T, et al. Crystallization and orientation studies in polypropylene/single wall carbon nanotube composite [J]. Polymer, 2003, 44 (8): 2373-2377. DOI: 10.1016/s0032-3861(03)00073-9http://dx.doi.org/10.1016/s0032-3861(03)00073-9.
BORYSIAK S, KLAPISZEWSKI Ł, BULA K, et al. Nucleation ability of advanced functional silica/lignin hybrid fillers in polypropylene composites [J]. Journal of Thermal Analysis and Calorimetry, 2016, 126: 251-262. DOI: 10.1007/s10973-016-5390-1http://dx.doi.org/10.1007/s10973-016-5390-1.
PHUA S L, YANG L, TOH C L, et al. Simultaneous enhancements of UV resistance and mechanical properties of polypropylene by incorporation of dopamine-modified clay [J]. ACS Applied Materials & Interfaces , 2013, 5(4): 1302-1309. DOI: 10.1021/am3024405http://dx.doi.org/10.1021/am3024405.
0
浏览量
9
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构