1.武汉理工大学 化学化工与生命科学学院,湖北 武汉 430070
李 曦, 女, 教授,现从事电化学研究。 E-mail:chemlixi@whut.edu.cn
纸质出版日期:2019-08-24,
收稿日期:2018-10-30,
扫 描 看 全 文
引用本文
李曦,王晨,蔡旻堃, 等.基于MOFs和酚醛泡沫的多孔碳泡沫电容性能[J].武汉大学学报(理学版),2019,65(4):383-389.
LI Xi,WANG Chen,CAI Minkun,et al.A Porous Carbon Foam Derived from MOFs and Phenolic Foam and Its Capacitive Performance [J].J Wuhan Univ (Nat Sci Ed),2019,65(4):383-389.
李曦,王晨,蔡旻堃, 等.基于MOFs和酚醛泡沫的多孔碳泡沫电容性能[J].武汉大学学报(理学版),2019,65(4):383-389. DOI:10.14188/j.1671-8836.2019.04.010
LI Xi,WANG Chen,CAI Minkun,et al.A Porous Carbon Foam Derived from MOFs and Phenolic Foam and Its Capacitive Performance [J].J Wuhan Univ (Nat Sci Ed),2019,65(4):383-389. DOI:10.14188/j.1671-8836.2019.04.010(Ch).
以酚醛泡沫为碳源,金属有机框架材料Cu-MOF-199为掺杂剂,经过高温碳化制备了一种电容性能优良、循环稳定性强的多孔碳泡沫。采用热重-差示扫描量热法(TG-DSC)、X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电镜(SEM)、氮气吸脱附测试等技术对材料的结构和形貌进行分析,采用循环伏安法(CV)、恒电流充放电(GCD)及电化学阻抗谱(EIS)等方法对材料的电化学性能与循环性能进行测试。结果表明,一定量Cu-MOF-199的引入可明显提升多孔碳泡沫的电容性能,在1 A·g,-1,时可达169 F·g,-1,,20 A·g,-1,时仍高达123 F·g,-1,,2 500次循环(1 A·g,-1,)后仍有97%的电容量。
With the phenolic foam as the carbon source and a metal-organic frameworks Cu-MOF-199 as the dopant, a porous carbon foam with the high capacitive performance and cyclability stability was prepared by the high-temperature carbonization. Thermal analysis-differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and N,2, adsorption-desorption were employed to characterize the composition, structure and morphology of the prepared material. The electrochemical properties of the material were tested by cyclic voltammetry (CV), galvanostatic charge-discharge method (GCD) and electrochemical impedance spectroscopy (EIS). The results demonstrate that the incorporation of Cu-MOF-199 can conspicuously promote the capacitive performance. The specific capacitance could reach 169 F·g,-1, at 1 A·g,-1, and 123 F·g,-1, at 20 A·g,-1, respectively. Meanwhile the carbon foam maintains 97% retention after 2 500-cycle GCD test at 1 A·g,-1,.
超级电容器碳泡沫酚醛树脂金属有机框架(MOF)
supercapacitorcarbon foamphenolic resinmetal-organic framework(MOF)
ISLAM M S, FISHER C A. Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties [J]. Chemical Society Reviews, 2014, 43(1):185-204. DOI: 10.1039/c3cs60199dhttp://dx.doi.org/10.1039/c3cs60199d.
WANG Y G, SONG Y F, XIA Y Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications [J]. Chemical Society Reviews, 2016, 45(21):5925-5950. DOI: 10.1039/c5cs00580ahttp://dx.doi.org/10.1039/c5cs00580a.
BORENSTEIN A, HANNA O, ATTIAS R, et al. Carbon-based composite materials for supercapacitor electrodes: A review [J]. Journal of Materials Chemistry A, 2017, 5(25): 12653-12672. DOI: 10.1039/c7ta00863ehttp://dx.doi.org/10.1039/c7ta00863e.
CHOE J, KIM M, KIM J, et al. A microwave foaming method for fabricating glass fiber rein forced phenolic foam [J]. Composite Structures, 2016,152:239-246. DOI: 10.1016/j.compstruct.2016.05.044http://dx.doi.org/10.1016/j.compstruct.2016.05.044.
SONG S A, OH H J, KIM B G, et al. Novel foaming methods to fabricate activated carbon reinforced microcellular phenolic foams [J]. Composites Science & Technology, 2013, 76:45-51. DOI: 10.1016/j.compscitech.2012.12.018http://dx.doi.org/10.1016/j.compscitech.2012.12.018.
GONG R, XU Q, CHU Y N, et al. A simple method preparation and characterization of epoxy reinforced microporous phenolic open-cell sound absorbent foam [J]. RSC Advances, 2015, 5(83):68003-68013. DOI: 10.1039/c5ra09908khttp://dx.doi.org/10.1039/c5ra09908k.
ZHAO X F, LAI S Q, LIU H Z, et al. Preparation and characterization of activated carbon foam from phenolic resin [J]. Journal of Environmental Sciences, 2009, 21(Suppl 1): 121-123. DOI:10.1016/S1001-0742(09)60053-Xhttp://dx.doi.org/10.1016/S1001-0742(09)60053-X.
LEI S W, GUO Q G, SHI J L, et al. Preparation of phenolic-based carbon foam with controllable pore structure and high compressive strength [J]. Carbon, 2010, 48(9):2644-2646. DOI: 10.1016/j.carbon.2010.03.017http://dx.doi.org/10.1016/j.carbon.2010.03.017.
LI X Z, LI X, ZHOU J, et al. Facile synthesis of hierarchical porous carbon derived from carboxyl graphene oxide/phenolic foam for high performance supercapacitors [J]. RSC Advances, 2017, 7(69):43965-43977. DOI: 10.1039/c7ra08602dhttp://dx.doi.org/10.1039/c7ra08602d.
CHEN Q, LI X, MIN X M, et al. Determination of catechol and hydroquinone with high sensitivity using MOF-graphene composites modified electrode [J]. Journal of Electroanalytical Chemistry, 2017, 789:114-122. DOI: 10.1016/j.jelechem.2017.02.033http://dx.doi.org/10.1016/j.jelechem.2017.02.033.
OUCHI K. Infra-red study of structural changes during the pyrolysis of a phenol-formaldehyde resin [J]. Carbon, 1966, 4(1):59-66. DOI: 10.1016/0008-6223(66)90009-1http://dx.doi.org/10.1016/0008-6223(66)90009-1.
ZHANG C M, SONG W, ZHANG X C, et al. Synthesis, characterization and evaluation of resin-based carbon spheres modified by oxygen functional groups for gaseous elemental mercury capture [J]. Journal of Materials Science, 2018, 53(13):9429-9448. DOI: 10.1007/s10853-018-2231-6http://dx.doi.org/10.1007/s10853-018-2231-6.
STRAUSS V, MARSH K, KOWAL M D, et al. A simple route to porous graphene from carbon nanodots for supercapacitor applications [J]. Advanced Materials, 2018, 30(8):1704449. DOI: 10.1002/adma.201704449http://dx.doi.org/10.1002/adma.201704449.
YAN H, QIN X T, YIN Y T, et al. Promoted Cu-Fe3O4, catalysts for low-temperature water gas shift reaction: Optimization of cu content [J]. Applied Catalysis B Environmental, 2018, 226:182-193. DOI: 10.1016/j.apcatb.2017.12.050http://dx.doi.org/10.1016/j.apcatb.2017.12.050.
BIEMMI E, CHRISTIAN S, STOCK N, et al. High-throughput screening of synthesis parameters in the formation of the metal-organic frameworks MOF-5 and HKUST-1 [J]. Microporous and Mesoporous Materials, 2009, 117(1-2):111-117. DOI: 10.1016/j.micromeso.2008.06.040http://dx.doi.org/10.1016/j.micromeso.2008.06.040.
ZHOU H, LIU X Q, ZHANG J, et al. Enhanced room-temperature hydrogen storage capacity in Pt-loaded graphene oxide/HKUST-1 composites [J]. International Journal of Hydrogen Energy, 2014, 39(5):2160-2167. DOI: 10.1016/j.ijhydene.2013.11.109http://dx.doi.org/10.1016/j.ijhydene.2013.11.109.
WANG L, WEI T, SHENG L Z, et al. “Brick-and-mortar” sandwiched porous carbon building constructed by metal-organic framework and graphene: Ultrafast charge/discharge rate up to 2 V·s-1, for supercapacitors [J]. Nano Energy, 2016, 30:84-92. DOI: 10.1016/j.nanoen.2016.09.042http://dx.doi.org/10.1016/j.nanoen.2016.09.042.
CONG Y Q, GE Y H, ZHANG T T, et al. Fabrication of Z-scheme Fe2O3-MoS2-Cu2O ternary nanofilm with significantly enhanced photoelectrocatalytic performance [J]. Industrial & Engineering Chemistry Research, 2018, 57(3):881-890. DOI: 10.1021/acs.iecr.7b04089http://dx.doi.org/10.1021/acs.iecr.7b04089.
CHENG H, SONG Y, WANG F, et al. Facile synthesis of hierarchical porous carbon from crude biomass for high-performance solid-phase microextraction [J]. Journal of Chromatography A, 2018, 1548:1-9. DOI: 10.1016/j.chroma.2018.03.019http://dx.doi.org/10.1016/j.chroma.2018.03.019.
CHEN C W, YU Y K, HE C, et al. Efficient capture of CO2 over ordered micro-mesoporous hybrid carbon nanosphere [J]. Applied Surface Science, 2018, 439:113-121. DOI: 10.1016/j.apsusc.2017.12.217http://dx.doi.org/10.1016/j.apsusc.2017.12.217.
XUE C F, LÜ Y Y, ZHANG F, et al. Copper oxide, activation of soft-templated mesoporous carbons and their electrochemical properties for capacitors [J]. Journal of Materials Chemistry, 2012, 22(4):1547-1555. DOI:10.1039/c1jm14349bhttp://dx.doi.org/10.1039/c1jm14349b.
SIMON P, GOGOTSI Y, DUNN B. Where do batteries end and supercapacitors begin [J]. Science, 2014, 343(6176):1210-1211. DOI: 10.1126/science.1249625http://dx.doi.org/10.1126/science.1249625.
ZHANG W, YIN Z X, CHUN A, et al. Rose rock-shaped nano Cu2O anchored graphene for high-performance supercapacitors via solvothermal route [J]. Journal of Power Sources, 2016, 318:66-75. DOI: 10.1016/j.jpowsour.2016.04.006http://dx.doi.org/10.1016/j.jpowsour.2016.04.006.
ANIA C O, SEREDYCH M, RODRIGUEZ-CASTELLON E, et al. New Copper/GO based material as an efficient oxygen reduction catalyst in an alkaline medium: The role of unique Cu/rGO architecture [J]. Applied Catalysis B Environmental, 2015, 163:424-435. DOI: 10.1016/j.apcatb.2014.08.022http://dx.doi.org/10.1016/j.apcatb.2014.08.022.
GUNASEKARAN S S, ELUMALALI S K, KUMARESAN T K, et al. Partially graphitic nanoporous activated carbon prepared from biomass for supercapacitor application [J]. Materials Letters, 2018, 218:165-168. DOI: 10.1016/j.matlet.2018.01.172http://dx.doi.org/10.1016/j.matlet.2018.01.172.
PENG X L, YUAN W, ZOU J X, et al. Nitrogen-incorporated ultrananocrystalline diamond/multilayer graphene composite carbon films: Synthesis and electrochemical performances [J]. Electrochimica Acta, 2017, 257:504-509. DOI: 10.1016/j.electacta.2017.08.093http://dx.doi.org/10.1016/j.electacta.2017.08.093.
LUAN Y T, HUANG Y Q, WANG L, et al. Porous Carbon@MnO2 and nitrogen-doped porous carbon from carbonized loofah sponge for asymmetric supercapacitor with high energy and power density [J]. Journal of Electroanalytical Chemistry, 2016, 763:90-96. DOI: 10.1016/j.jelechem.2015.12.046http://dx.doi.org/10.1016/j.jelechem.2015.12.046.
WAN L, SHAMSAEI E, EASTON C D, et al. ZIF-8 derived nitrogen-doped porous carbon/carbon nanotube composite for high-performance supercapacitor [J]. Carbon, 2017,121:330-336. DOI: 10.1016/j.carbon.2017.06.017http://dx.doi.org/10.1016/j.carbon.2017.06.017.
YU M, HAN Y Y, LI J, et al. CO2-activated porous carbon derived from cattail biomass for removal of malachite green dye and application as supercapacitors [J]. Chemical Engineering Journal, 2017,317:493-502. DOI: 10.1016/j.cej.2017.02.105http://dx.doi.org/10.1016/j.cej.2017.02.105.
LU C, HUANG Y H, HONG J S, et al. The effects of melamine on the formation of carbon xerogel derived from resorcinol and formaldehyde and its performance for supercapacitor [J]. Journal of Colloid & Interface Science, 2018, 524:209-218. DOI: 10.1016/j.jcis.2018.04.006http://dx.doi.org/10.1016/j.jcis.2018.04.006.
CHEN Y, ZHANG X, ZHANG D C, et al. High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes [J]. Carbon, 2011, 49(2):573-580. DOI: 10.1016/j.carbon.2010.09.060http://dx.doi.org/10.1016/j.carbon.2010.09.060.
ZHAO J, LI Y J, WANG G L, et al. Enabling high-volumetric-energy-density supercapacitors: Designing open, low-tortuosity heteroatom-doped porous carbon-tube bundle electrodes [J]. Journal of Materials Chemistry A, 2017, 5(44): 23085–23093. DOI: 10.1039/c7ta07010ahttp://dx.doi.org/10.1039/c7ta07010a.
XU P P, LIU J J, LIU T, et al. Preparation of binder-free CuO/Cu2O/Cu composites: A novel electrode material for supercapacitor applications [J]. RSC Advances, 2016, 6(34): 28270-28278. DOI: 10.1039/c6ra00004ehttp://dx.doi.org/10.1039/c6ra00004e.
NIU L Y, WANG Y D, SHAN S, et al. Facilely synthesis of 3D CuxO-Cu nanostructures as binder-free electrode for supercapacitors [J]. Chemical Physics Letters, 2016, 652:172-176. DOI: 10.1016/j.cplett.2016.04.006http://dx.doi.org/10.1016/j.cplett.2016.04.006.
WANG J, POLLEUX J, LIM J, et al. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles [J]. Journal of Physical Chemistry C, 2007, 111(40):14925-14931. DOI: 10.1021/jp074464whttp://dx.doi.org/10.1021/jp074464w.
BREZESINSKI T, WANG J, TOLBERT S H, et al. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors [J]. Nature Materials,2010,9(2):146-151. DOI:10.1038/NMAT2612http://dx.doi.org/10.1038/NMAT2612.
WANG H, CASALONGUE H S, LIANG Y, et al. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials [J]. Journal of the American Chemical Society, 2010, 132(21):7472-7477. DOI: 10.1021/ja102267jhttp://dx.doi.org/10.1021/ja102267j.
LIN Z Q, ZENG Z P, GUI X C, et al. Carbon nanotube sponges, aerogels, and hierarchical composites: Synthesis, properties, and energy applications [J]. Advanced Energy Materials, 2016, 6(17):1600554. DOI: 10.1002/aenm.201600554http://dx.doi.org/10.1002/aenm.201600554.
ZHANG X H, MENG X Y, WANG Q, et al. Preparation and electrochemical investigation of polyaniline nanowires for high performance supercapacitor [J]. Materials Letters, 2018, 217:312-315. DOI: 10.1016/j.matlet.2018.01.112http://dx.doi.org/10.1016/j.matlet.2018.01.112.
0
浏览量
8
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构