1.浙江机电职业技术学院 数学教研室,浙江 杭州 310053
有名辉,男,讲师,现从事算子逼近与不等式的研究。E-mail:youminghui@hotmail.com
纸质出版日期:2021-04-24,
收稿日期:2020-03-19,
扫 描 看 全 文
引用本文
有名辉.离散型Hilbert不等式的推广及应用[J].武汉大学学报(理学版),2021,67(2):179-184.
YOU Minghui.On an Extension of the Discrete Type Hilbert Inequality and Its Application [J].J Wuhan Univ (Nat Sci Ed),2021,67(2):179-184.
有名辉.离散型Hilbert不等式的推广及应用[J].武汉大学学报(理学版),2021,67(2):179-184. DOI:10.14188/j.1671-8836.2020.0064.
YOU Minghui.On an Extension of the Discrete Type Hilbert Inequality and Its Application [J].J Wuhan Univ (Nat Sci Ed),2021,67(2):179-184. DOI:10.14188/j.1671-8836.2020.0064(Ch).
通过引入两个参数,构造了一个离散的分式型的核函数,并由此建立相应的Hilbert不等式。利用余切函数的部分分式展开,证明了所构建的不等式的常数因子可用余切函数表示,且常数因子是最佳的。通过对参数赋值,得到了一些有趣的特殊结果。
By introducing two parameters, a discrete kernel function of fraction type is constructed, and the corresponding Hilbert inequality is established. By using the partial fraction expansion of the cotangent function, it is proved that the constant factor of the constructed inequality can be expressed by cotangent function, and the constant factor is optimal. Finally, by specifying the values of parameters, some interesting special results are obtained.
Hilbert不等式离散型部分分式展开余切函数
Hilbert inequalitydiscrete typepartial fraction expansioncotangent function
HARDY G H, LITTTLEWOOD J E, POLYA G. Inequalities [M]. London: Cambridge University Press, 1952:226.
杨必成.关于一个推广的Hardy-Hilbert不等式[J].数学年刊:A辑,2002,23(2):247-254. DOI: 10.3321/j.issn:1000-8134.2002.02.014http://dx.doi.org/10.3321/j.issn:1000-8134.2002.02.014.
YANG B C. On an extension of Hardy-Hilbert’s inequality [J]. Chinese Annals of Mathematics: A,2002, 23(2):247-254. DOI: 10.3321/j.issn:1000-8134.2002.02.014(Chhttp://dx.doi.org/10.3321/j.issn:1000-8134.2002.02.014(Ch).
杨必成.关于Hardy-Hilbert不等式的单参数推广[J].数学的实践与认识,2006,36(4):226-231. DOI: 10.3969/j.issn.1000-0984.2006.04.039http://dx.doi.org/10.3969/j.issn.1000-0984.2006.04.039.
YANG B C. On an extension of Hardy-Hilbert’s inequality with a parameter [J]. Mathematics in Practice and Theory,2006,36(4):226-231. DOI: 10.3969/j.issn.1000-0984.2006.04.039(Chhttp://dx.doi.org/10.3969/j.issn.1000-0984.2006.04.039(Ch).
GAO M Z, YANG B C. On the extended Hilbert’s inequality [J]. Proceedings of the American Mathematical Society, 1998, 272:187-199.
YANG B C. On new extensions of Hardy-Hilbert’s inequality [J]. Acta Mathematica Hungarica , 2004, 104: 293-301. DOI: 10.1023/b:amhu.0000036288.28531.a3http://dx.doi.org/10.1023/b:amhu.0000036288.28531.a3.
YANG B C, DEBNATH L. On a new generalization of Hardy-Hilbert’s inequality and its application [J]. Journal of Mathematical Analysis and Applications, 1999, 233:484-497. 10.1006/jmaa.1999.6295http://dx.doi.org/10.1006/jmaa.1999.6295
YANG B C. On a new extension of Hardy-Hilbert’s inequality and its applications [J]. International Journal of Pure and Applied Mathematics, 2003, 5:57-66.
YANG B C. On a new extension of Hardy-Hilbert’s inequality with some parameters [J]. Acta Mathematica Hungarica, 2005, 108(4):337-350. DOI: 10.1007/s10474-005-0229-4http://dx.doi.org/10.1007/s10474-005-0229-4.
YANG B C. On a dual Hardy-Hilbert’s inequality and its generalization [J]. Analysis Acta Mathematica Hungarica,2005, 31: 151-161. DOI: 10.1007/s10476-005-0010-5http://dx.doi.org/10.1007/s10476-005-0010-5.
CHEN Z, XU J. New extensions of Hardy-Hilbert’s inequality with multiple parameters [J]. Acta Mathematica Hungarica, 2007, 117(4):383-400. DOI: 10.1007/s10474-007-6135-1http://dx.doi.org/10.1007/s10474-007-6135-1.
KUANG J C, DEBNATH L. On new generalizations of Hilbert’s inequality and their applications [J]. Journal of Mathematical Analysis and Applications, 2002, 245:248-265. DOI: 10.1006/jmaa.2000.6766http://dx.doi.org/10.1006/jmaa.2000.6766.
YOU M H. On a new discrete Hilbert⁃type inequality and its application [J]. Mathematical Inequalities and Applications, 2015, 18(4):1575-1587. DOI: 10.7153/mia-18-121http://dx.doi.org/10.7153/mia-18-121.
菲赫金哥尔茨 http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46290665&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46290651&type=5.926666742.37066674. 微积分学教程(第二卷)[M]. 北京:高等教育出版社,2006:397. 10.1016/b978-044310180-9.50027-9http://dx.doi.org/10.1016/b978-044310180-9.50027-9
FIKHTENGOLTS Γ M. Calculus Course (Volume Second) [M]. Beijing:Higher Education Press, 2006:397(Ch). 10.1016/b978-044310180-9.50027-9http://dx.doi.org/10.1016/b978-044310180-9.50027-9
0
浏览量
88
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构