1.重庆工商大学 长江上游经济研究中心,重庆 400067
2.重庆工商大学 数学与统计学院,重庆 400067
卢小丽,女,博士生,主要研究方向为金融计量分析。E-mail: xiaolilu@126.com
纸质出版日期:2021-04-24,
收稿日期:2020-05-26,
扫 描 看 全 文
引用本文
卢小丽,何光,李高西.求解自融资投资组合模型的量子行为的粒子群优化算法[J].武汉大学学报(理学版),2021,67(2):136-142.
LU Xiaoli,HE Guang,LI Gaoxi.Quantum-Behaved Particle Swarm Optimization Algorithm for Solving Self-Financing Portfolio Model [J].J Wuhan Univ (Nat Sci Ed),2021,67(2):136-142.
卢小丽,何光,李高西.求解自融资投资组合模型的量子行为的粒子群优化算法[J].武汉大学学报(理学版),2021,67(2):136-142. DOI:10.14188/j.1671-8836.2020.0137
LU Xiaoli,HE Guang,LI Gaoxi.Quantum-Behaved Particle Swarm Optimization Algorithm for Solving Self-Financing Portfolio Model [J].J Wuhan Univ (Nat Sci Ed),2021,67(2):136-142. DOI:10.14188/j.1671-8836.2020.0137(Ch).
为有效求解自融资投资组合模型,基于粒子群优化(particle swarm optimization,PSO)算法,提出了一种改进的量子行为的粒子群优化算法(LDQPSO)。在算法的设计中,借助Levy飞行策略对粒子位置的迭代公式进行更新,用于提高算法的局部收敛精度和全局探索能力;针对迭代后期的早熟问题,引入了多样性的判定和增强的操作。算法性能测试结果表明,LDQPSO算法在收敛精度和鲁棒性上比已有的3种PSO改进算法有更好的表现。应用改进算法对自融资投资组合模型进行了求解。与传统的遗传算法、差分进化、粒子群优化算法和量子行为的粒子群优化算法相比,LDQPSO算法在实际应用中拥有更好的寻优能力。
In order to solve self-financing portfolio model effectively, an improved QPSO(quantum-behaved particle swarm optimization) algorithm—LDQPSO is proposed based on PSO(particle swarm optimization) algorithms. To enhance local convergence precision and global exploration capability of the algorithm, Levy flight strategy is used to renew the iterative formula of particle position in the algorithm design. Meanwhile, the identification and improvement of diversity are considered against premature in the later stage of iteration. And performance test results indicate that LDQPSO algorithm achieves better convergence accuracy and robustness than three modified PSO algorithms. Finally, the improved algorithm is applied to solve self-financing portfolio model. Compared with traditional genetic algorithm, differential evolution, particle swarm optimization algorithm and quantum-behaved particle swarm optimization algorithm, LDQPSO algorithm has better search ability in practical application.
自融资投资组合量子行为的粒子群优化算法Levy飞行收敛精度多样性
self-financing portfolioquantum-behaved particle swarm optimization algorithmLevy flightconvergence precisiondiversity
MARKOWITZ H. Portfolio selection[J]. Journal of Finance, 1952, 7(1): 77-91. DOI: 10.1111/j.1540-6261.1952. tb01525.xhttp://dx.doi.org/10.1111/j.1540-6261.1952.tb01525.x.
SOLEIMANI H, GOLMAKANI H R. Markowitz-based portfolio selection with minimum transaction lots, cardinality constraints and regarding sector capitalization using genetic algorithm [J]. Expert Systems with Applications, 2009, 36(3): 5058-5063. DOI: 10.1016/j.eswa.2008.06.007http://dx.doi.org/10.1016/j.eswa.2008.06.007.
BRANKE J, SCHECKENBACH B, STEIN M, et al. Portfolio optimization with an envelope-based multi-objective evolutionary algorithm[J]. European Journal of Operational Research, 2009, 199(3): 684-693. DOI: 10.1016/j.ejor.2008.01.054http://dx.doi.org/10.1016/j.ejor.2008.01.054.
HE G, HUANG N J. A modified particle swarm optimization algorithm with applications [J]. Applied Mathematics and Computation, 2012, 219(3): 1053-1060. DOI: 10.1016/j.amc.2012.07.010http://dx.doi.org/10.1016/j.amc.2012.07.010.
邓雪, 李荣钧. 基于模糊遗传算法的自融资有效投资组合研究[J]. 经济数学, 2009, 26(4): 91-96. DOI: 10.3969/j.issn.1007-1660.2009.04.013http://dx.doi.org/10.3969/j.issn.1007-1660.2009.04.013.
DENG X, LI R J. The research on self-financing effective portfolio based on fuzzy genetic algorithm [J]. Mathematics in Economics, 2009, 26(4): 91-96. DOI: 10.3969/j.issn.1007-1660. 2009.04.013(Chhttp://dx.doi.org/10.3969/j.issn.1007-1660.2009.04.013(Ch).
陈铁英, 张忠桢. 自融资均值方差投资组合模型的旋转算法[J]. 系统工程理论与实践, 2004, 24(6): 98-103. DOI: 10.3321/j.issn:1000-6788.2004.06.017http://dx.doi.org/10.3321/j.issn:1000-6788.2004.06.017.
CHEN T Y, ZHANG Z Z. A pivoting based algorithm for self-financing mean variance portfolio model [J]. Systems Engineering Theory & Practice, 2004, 24(6): 98-103. DOI: 10.3321/j.issn:1000-6788.2004.06.017(Chhttp://dx.doi.org/10.3321/j.issn:1000-6788.2004.06.017(Ch).
刘衍民, 赵庆祯, 牛奔. 约束粒子群算法求解自融资投资组合模型研究[J]. 数学的实践与认识, 2011, 41(2): 78-84. DOI: 10.3969/j.issn.1000-0984.2011.02.011http://dx.doi.org/10.3969/j.issn.1000-0984.2011.02.011.
LIU Y M, ZHAO Q Z, NIU B. Constrain particle swarm optimizer for solving self-financing portfolio model[J]. Mathematics in Practice and Theory, 2011, 41(2): 78-84. DOI: 10.3969/j.issn.1000-0984.2011.02.011(Chhttp://dx.doi.org/10.3969/j.issn.1000-0984.2011.02.011(Ch).
SUN J, FENG B, XU W B. Particle swarm optimization with particles having quantum behavior [C]// Congress on Evolutionary Computation. New York: IEEE Press, 2004: 325-331. DOI: 10.1109/CEC.2004.1330875http://dx.doi.org/10.1109/CEC.2004.1330875.
方伟, 孙俊, 谢振平,等. 量子粒子群优化算法的收敛性分析及控制参数研究[J]. 物理学报, 2010, 59(6): 3686-3694. DOI: 10.7498/aps.59.3686http://dx.doi.org/10.7498/aps.59.3686.
FANG W, SUN J, XIE Z P, et al. Convergence analysis of quantum-behaved particle swarm optimization algorithm and study on its control parameter [J]. Acta Physica Sinica, 2010, 59(6): 3686-3694. DOI: 10.7498/aps.59.3686(Chhttp://dx.doi.org/10.7498/aps.59.3686(Ch).
任小康, 郝瑞芝, 孙正兴,等. 基于单纯形法的量子粒子群优化算法[J]. 微电子学与计算机, 2010, 27(1): 154-157. DOI: 10.3969/j.issn.1000-7180.2010.01.042http://dx.doi.org/10.3969/j.issn.1000-7180.2010.01.042.
REN X K, HAO R Z, SUN Z X, et al. Quantum-behaved particle swarm optimization algorithm based on simplex method [J]. Microelectronics & Computer, 2010, 27(1): 154-157. DOI: 10.3969/j.issn.1000-7180.2010.01.042(Chhttp://dx.doi.org/10.3969/j.issn.1000-7180.2010.01.042(Ch).
张兰,聂玉峰. 一种融合差分进化的量子粒子群优化算法[J]. 计算机仿真, 2016, 33(2):313-316. DOI: 10.3969/ j.issn.1006-9348.2016.02.066http://dx.doi.org/10.3969/j.issn.1006-9348.2016.02.066.
ZHANG L, NIE Y F. Quantum behaved particle swarm optimization algorithm merging differential evolution[J]. Computer Simulation, 2016, 33(2):313-316. DOI: 10.3969/ j.issn.1006-9348.2016.02.066(Chhttp://dx.doi.org/10.3969/j.issn.1006-9348.2016.02.066(Ch).
ZHANG F. Intelligent Task Allocation Method Based on Improved QPSO in Multi-agent System [DB/OL]. [2020-03-02]. https://www.onacademic.com/detail/journal_1000042272886299_965a.htmlhttps://www.onacademic.com/detail/journal_1000042272886299_965a.html. DOI: 10.1007/s12652-019-01242-0http://dx.doi.org/10.1007/s12652-019-01242-0.
张兰. 基于HS⁃QPSO算法的Tikhonov正则参数选取[J]. 计算机仿真, 2016, 33(1):408-412. DOI: 10.3969/ j.issn.1006-9348. 2016.01.089http://dx.doi.org/10.3969/j.issn.1006-9348.2016.01.089.
ZHANG L. Choosing of Tikhonov regularization parameter based on harmony search and quantum-behaved particle swarm optimization algorithm [J]. Computer Simulation, 2016, 33(1):408-412. DOI: 10.3969/j.issn.1006-9348. 2016.01.089(Chhttp://dx.doi.org/10.3969/j.issn.1006-9348.2016.01.089(Ch).
赵吉, 程成. 基于演化搜索信息的量子行为粒子群优化算法[J]. 计算机工程与应用, 2017, 53(9): 41-46. DOI: 10.3778/j.issn.1002-8331.1511-0171http://dx.doi.org/10.3778/j.issn.1002-8331.1511-0171.
ZHAO J, CHENG C. Improved QPSO algorithm based on search history [J]. Computer Engineering and Applications, 2017, 53(9): 41-46. DOI: 10.3778/j.issn.1002-8331.1511-0171(Chhttp://dx.doi.org/10.3778/j.issn.1002-8331.1511-0171(Ch).
LI L L, JIAO L C, ZHAO J Q, et al. Quantum-behaved discrete multi-objective particle swarm optimization for complex network clustering[J]. Pattern Recognition, 2017, 63:1-14. DOI: 10.1016/j.patcog.2016.09.013http://dx.doi.org/10.1016/j.patcog.2016.09.013.
LUO H X, JIA P F, QIAO S Q, et al. Enhancing electronic nose performance based on a novel QPSO RBM technique[J]. Sensors & Actuators B Chemical, 2018, 259: 241-249. DOI: 10.1016/j.snb.2017.12.026http://dx.doi.org/10.1016/j.snb.2017.12.026.
MANTEGNA R N. Fast accurate algorithm for numerical simulation of Levy stable stochastic processes [J]. Physical Review E, 1994, 49(5): 4677-4683. DOI: 10.1103/PhysRevE.49.4677http://dx.doi.org/10.1103/PhysRevE.49.4677.
XIAO J H, NIU Y Y, CHEN P, et al. An improved gravitational search algorithm for green partner selection in virtual enterprises [J]. Neurocomputing, 2016, 217(18): 103-109. DOI: 10.1016/j.neucom.2016.03.092http://dx.doi.org/10.1016/j.neucom.2016.03.092.
SUN W, LIN A P, YU H S, et al. All-dimension neighborhood based particle swarm optimization with randomly selected neighbors [J]. Information Sciences, 2017, 405: 141-156. DOI: 10.1016/j.ins.2017.04.007http://dx.doi.org/10.1016/j.ins.2017.04.007.
0
浏览量
29
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构