1.湖北师范大学 数学与统计学院,湖北 黄石 435002
胡宏昌,男,教授,现从事回归模型的统计推断及其应用的研究。E-mail:retutome@163.com
扫 描 看 全 文
胡宏昌, 陈璐.
HU Hongchang, CHEN Lu. Parametric Hypothesis Test of
胡宏昌, 陈璐.
HU Hongchang, CHEN Lu. Parametric Hypothesis Test of
p,-范分布是包含拉普拉斯分布、正态分布、均匀分布、退化分布等在内的一类重要分布,然而几乎没有针对该分布的检验问题的研究。探讨了,p,-范分布中未知参数的假设检验,利用矩估计、极大似然估计和中心极限定理等工具研究了一个和两个总体为,p,-范分布的未知参数的检验问题。参数,,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46288960&type=,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46288958&type=,1.69333339,3.13266659,和,,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46289011&type=,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46288962&type=,1.60866666,3.13266659,采用近似U检验,单总体方差参数,,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46288976&type=,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46289013&type=,1.52399993,2.45533323,采用,,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46289023&type=,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46289018&type=,2.70933342,3.30199981,检验,而两个总体的方差参数是否相等采用,,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46289041&type=,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46289024&type=,3.21733332,3.21733332,检验,并用6个模拟算例和1个实例说明了本文的检验方法是可行的。给出了需要进一步研究的两个开问题。
p,-norm distribution is a kind of distribution, including Laplace distribution,normal distribution, uniform distribution, degenerate distribution, and so on. However, there is little research on the test of this distribution. In this paper, we study the hypothesis test of unknown parameters in the ,p,-norm distribution. Using the tools of moment estimation, maximum likelihood estimation and the central limit theorem, we investigate the unknown parameters test of ,p,-norm distribution under single population and double populations. The parameters ,,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46289046&type=,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46289044&type=,1.69333339,3.13266659, and ,,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46289053&type=,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46289048&type=,1.60866666,3.13266659, are tested by approximate U-test, and the variance parameter ,,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46289057&type=,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46289055&type=,1.52399993,2.45533323, of single population are tested by ,,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46289074&type=,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46289059&type=,2.70933342,3.30199981,-test. For variance parameters of two populations, whether to be equal or not are tested by ,,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46289078&type=,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46289061&type=,3.21733332,3.21733332,-test. Six simulation examples and one real case show that our test method is feasible. Finally, two open problems that need further study are given.
p-范分布参数假设检验近似U检验http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46289113&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46289066&type=2.709333423.30199981检验http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46289118&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46289101&type=3.217333323.21733332检验
p-norm distributionparametric hypothesis testapproximate U-testhttp://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46289123&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46289120&type=2.709333423.30199981-testhttp://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46289110&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46289127&type=3.217333323.21733332-test
康广庸, 胡乃滨. 测量结果误差估计[M]. 北京:中国计量出版社, 1990. 10.1016/j.mineng.2007.10.020http://dx.doi.org/10.1016/j.mineng.2007.10.020
KANG G Y, HU N B. Error Estimate of Measurement Result [M]. Beijing: China Metrology Press,1990(Ch). 10.1016/j.mineng.2007.10.020http://dx.doi.org/10.1016/j.mineng.2007.10.020
孙海燕,於宗俦. p-范分布母体的抽样分布[J]. 武汉测绘科技大学学报, 1998, 23(2):118-120. DOI:10.3321/j.issn:1671-8860.1998.02.006http://dx.doi.org/10.3321/j.issn:1671-8860.1998.02.006.
SUN H Y, YU Z C. The sample distribution of p-norm population [J]. Journal of Wuhan Technical University of Surveying and Mapping, 1998, 23(2):117-120. DOI:10.3321/j.issn:1671-8860.1998.02.006(Chhttp://dx.doi.org/10.3321/j.issn:1671-8860.1998.02.006(Ch).
孙海燕, 於宗俦. p-范分布母体抽样分布的数字特征[J]. 武汉测绘科技大学学报, 1998, 23(3):244-247. DOI:10.3321/j.issn:1671-8860.1998.03.014http://dx.doi.org/10.3321/j.issn:1671-8860.1998.03.014.
SUN H Y, YU Z C. The digital character of p-norm sample distribution [J]. Journal of Wuhan Technical University of Surveying and Mapping, 1998, 23(3):244-247. DOI:10.3321/j.issn:1671-8860.1998.03.014(Chhttp://dx.doi.org/10.3321/j.issn:1671-8860.1998.03.014(Ch).
孙海燕. p-范分布的近似表示[J]. 武汉大学学报(信息科学版), 2001, 26(3):222-225. DOI:10.3321/j.issn:1671-8860.2001.03.008http://dx.doi.org/10.3321/j.issn:1671-8860.2001.03.008.
SUN H Y. Approximate representation of the p-norm distribution[J]. Geomatics and Information Science of Wuhan University, 2001, 26(3):222-225. DOI:10.3321/j.issn:1671-8860.2001.03.008(Chhttp://dx.doi.org/10.3321/j.issn:1671-8860.2001.03.008(Ch).
孙海燕.一元p-范极大似然平差[J]. 武汉测绘科学大学学报, 1994, 19(2):150-156.
SUN H Y. The monadic p-norm maximum likelihood adjustment[J]. Journal of Wuhan Technical University of Surveying and Mapping, 1994, 19(2):150-156(Ch).
胡宏昌,孙海燕. p-范分布参数σ的估计[J]. 武汉大学学报(信息科学版), 2002, 27(5):483-485. DOI:10.3321/j.issn:1671-8860.2002.05.009http://dx.doi.org/10.3321/j.issn:1671-8860.2002.05.009.
HU H C, SUN H Y. Parameter σ estimation of p-norm distribution [J]. Geomatics and Information Science of Wuhan University, 2002 , 27(5):483-485. DOI:10.3321/j.issn:1671-8860.2002.05.009(Chhttp://dx.doi.org/10.3321/j.issn:1671-8860.2002.05.009(Ch).
潘雄,付宗堂. 一元有界p-范分布的参数自适应估计[J]. 武汉大学学报(信息科学版), 2007, 32(4):323-325+335. DOI:10.3321/j.issn:1671-8860.2007.04.012http://dx.doi.org/10.3321/j.issn:1671-8860.2007.04.012.
PAN X, FU Z T. Parameter adaptive estimation of bounded p-norm distribution [J]. Geomatics and Information Science of Wuhan University, 2007, 32(4):323-325+335. DOI:10.3321/j.issn:1671-8860.2007.04.012(Chhttp://dx.doi.org/10.3321/j.issn:1671-8860.2007.04.012(Ch).
潘雄,王俊雷,袁珊丽,等. 一元p-范分布参数估计的改进方法[J].测绘科学, 2011,36(02):51-52+55. DOI:10.1007/s11589-011-0776-4:http://dx.doi.org/10.1007/s11589-011-0776-4:
PAN X, WANG J L, YUAN S L, et al. An improvement method of parameters estimation in p-norm distribution [J]. Science of Surveying and Mapping, 2011,36(2):51-52+55. DOI:10.1007/s11589-011-0776-4(Chhttp://dx.doi.org/10.1007/s11589-011-0776-4(Ch).
潘雄,程少杰,赵春茹. 一元p-范分布的参数快速估计方法[J]. 武汉大学学报(信息科学版), 2010, 35(2): 189-192.
PAN X, CHENG S J, ZHAO C R. A fast parameter estimation in p-norm distribution [J]. Geomatics and Information Science of Wuhan University, 2010, 35(2):189-192(Ch).
潘雄,罗静,汪耀. p范分布的实数阶与对数矩估计法[J]. 测绘学报, 2016, 45(3):302-309. DOI:10.11947/j.AGCS.2016.20150166http://dx.doi.org/10.11947/j.AGCS.2016.20150166.
PAN X, LUO J, WANG Y. Real order and logarithmic moment estimation method of p-norm distribution [J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(3):302-309. DOI:10.11947/j.AGCS.2016.20150166(Chhttp://dx.doi.org/10.11947/j.AGCS.2016.20150166(Ch).
潘雄,罗静,刘衍宏,等. 基于矩估计法的p范分布参数估计[J]. 武汉大学学报(信息科学版),2017, 42(4):563-568. DOI:10.13203/j.whugis20140968http://dx.doi.org/10.13203/j.whugis20140968.
PAN X, LUO J, LIU Y H, et al. Parameter estimation of p-norm distribution based on the moments approach [J]. Geomatics and Information Science of Wuhan University, 2017, 42(4):563-568. DOI:10.13203/j.whugis20140968(Chhttp://dx.doi.org/10.13203/j.whugis20140968(Ch).
潘雄,孙海燕. 半参数p-范极大似然回归[J ]. 测绘学报, 2005, 34(1):30-34. DOI:10.3321/j.issn:1001-1595.2005.01.006http://dx.doi.org/10.3321/j.issn:1001-1595.2005.01.006.
PAN X, SUN H Y. Semiparametric p-norm maximum likelihood regression [J]. Acta Geodaetica et Cartographica Sinica,2005, 34(1):30-34. DOI:10.3321/j.issn:1001-1595.2005.01.006(Chhttp://dx.doi.org/10.3321/j.issn:1001-1595.2005.01.006(Ch).
李博峰, 沈云中. p-范分布混合整数模型极大似然估计[J]. 测绘学报, 2010,39(2):141-145. DOI:10.1017/S0004972710001772http://dx.doi.org/10.1017/S0004972710001772.
LI B F, SHEN Y Z. Maximum likelihood estimation in mixed integer linear model with p-norm distribution[J]. Acta Geodaetica et Cartographica Sinica, 2010,39(2):141-145. DOI:10.1017/S0004972710001772(Chhttp://dx.doi.org/10.1017/S0004972710001772(Ch).
蓝悦明,杨晓梅.手工数字化地图误差的分布检验[J]. 测绘通报, 2003, 49(4):42-44. DOI:10.3969/j.issn.0494-0911.2003.04.013http://dx.doi.org/10.3969/j.issn.0494-0911.2003.04.013.
LAN Y M, YANG X M. The distribution testing of manual digitized map errors [J]. Surveying and Mapping Bulletin, 2003, 49(4): 42-44. DOI:10.3969/j.issn.0494-0911.2003.04.013(Chhttp://dx.doi.org/10.3969/j.issn.0494-0911.2003.04.013(Ch).
童光荣,李思维. 偏态p范分布刻画股指收益率的实证检验[J]. 统计与决策, 2015, 31(8):167-169. DOI:10.1093/rfs/hhw049http://dx.doi.org/10.1093/rfs/hhw049.
TONG G R, LI S W. An empirical test of stock index returns described by skewed p-norm distribution[J].Statistics and Decision, 2015, 31(8):167-169. DOI:10.1093/rfs/hhw049(Chhttp://dx.doi.org/10.1093/rfs/hhw049(Ch).
孙海燕, 潘雄. 一元p-范分布的参数估计[J]. 武汉大学学报(信息科学版), 2003, 28(5):551-554. 10.3321/j.issn:1671-8860.2003.05.012http://dx.doi.org/10.3321/j.issn:1671-8860.2003.05.012
SUN H Y, PAN X. Parametric estimation of one-variable p-norm distribution [J]. Geomatics and Information Science of Wuhan University, 2003, 28(5):551-554(Ch). 10.3321/j.issn:1671-8860.2003.05.012http://dx.doi.org/10.3321/j.issn:1671-8860.2003.05.012
高惠璇. 实用统计方法与SAS系统[M]. 北京:北京大学出版社, 2001.
GAO H X. Practical Statistical Method and SAS System [M]. Beijing: Peking University Press, 2001(Ch).
0
浏览量
21
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构