1.江汉大学 智能制造学院,湖北 武汉 430056
2.武汉晴川学院 机械与电气工程学院,湖北 武汉430204
3.湖南大学 机械与运载工程学院,湖南 长沙 410082
张 良,男,高级工程师,现从事非线性动力学分岔控制。E-mail: lzhang08@163.com
纸质出版日期:2021-04-24,
收稿日期:2020-06-24,
扫 描 看 全 文
引用本文
张良,韩芩,唐驾时.Logistic系统倍周期分岔二分周期点的反控制[J].武汉大学学报(理学版),2021,67(2):199-204.
ZHANG Liang,HAN Qin,TANG Jiashi.Anti-Control of the Period Doubling Bifurcation at Two Periodic Point of Logistic System [J].J Wuhan Univ (Nat Sci Ed),2021,67(2):199-204.
张良,韩芩,唐驾时.Logistic系统倍周期分岔二分周期点的反控制[J].武汉大学学报(理学版),2021,67(2):199-204. DOI:10.14188/j.1671-8836.2020.0165
ZHANG Liang,HAN Qin,TANG Jiashi.Anti-Control of the Period Doubling Bifurcation at Two Periodic Point of Logistic System [J].J Wuhan Univ (Nat Sci Ed),2021,67(2):199-204. DOI:10.14188/j.1671-8836.2020.0165(Ch).
研究了一维Logistic系统(虫口方程)的倍周期分岔的反控制,利用反馈控制方法设置非线性控制器,对系统一分为二周期倍分点进行反控制,得到了控制参数与分岔参数之间的关系式,通过控制分岔参数的取值确定控制参数,实现反控制目的。同时,对控制器的简化进行了分析,发现简化后的控制器同样可以实现反控制目的。这对抑制虫口数目减少或增长是具有实际意义。
In this paper, the anti-control of the period doubling bifurcation of one-dimensional Logistic equation(insect mouth model) is studied. The point of one period region can be arbitrarily changed to two periodic points by setting the nonlinear controllers with feedback control method. The relationship between the control parameters and the bifurcation parameters is obtained, and the control parameters are determined by controlling the value of the bifurcation parameters to achieve the goal of anti-control. Meanwhile, the simplification of controllers are analyzed, which shows that the simplified controllers can also achieve the goal of anti-control. In ecology, it has practical significance to suppress reducing or increasing the number of insect mouth.
Logistic 系统倍周期分岔二分周期点反控制
Logistic systemperiod doubling bifurcationtwo periodic pointanti-control
唐驾时,符文彬,钱长照,等. 非线性系统的分岔控制[M]. 北京:科学出版社,2016.
TANG J S, FU W B, QIAN C Z,et al. Bifurcation Control in Nonlinear Systems[M]. Beijing: Science Press, 2016(Ch).
CHENG Z S. Anti-control of Hopf bifurcation for Chen’s system through washout filters [J]. Neurocomputing, 2010, 73(16/17/18): 3139-3146. DOI:10.1016/j.neucom.2010.06.016http://dx.doi.org/10.1016/j.neucom.2010.06.016.
WEN G L, XU H D, LÜ Z, et al. Anti-controlling Hopf bifurcation in a type of centrifugal governor system[J]. Nonlinear Dynamics, 2015, 81(1/2): 811-822. DOI:10.1007/s11071-015-2031-3http://dx.doi.org/10.1007/s11071-015-2031-3.
张思进, 杜伟霞, 殷珊. 振动筛系统双Hopf分岔的反控制[J]. 湖南大学学报(自然科学版), 2017, 44(10): 55-61. DOI:10.16339/j.cnki.hdxbzkb.2017.10.008http://dx.doi.org/10.16339/j.cnki.hdxbzkb.2017.10.008.
ZHANG S J, DU W X, YIN S. Anti-control of double Hopf bifurcation of vibration rating griddle system[J]. Journal of Hunan University (Natural Sciences), 2017, 44(10): 55-61. DOI:10.16339/j.cnki.hdxbzkb.2017.10.008(Chhttp://dx.doi.org/10.16339/j.cnki.hdxbzkb.2017.10.008(Ch).
FENG Y L, ZHANG X H. Anti-control of chaos in p-Ge photoconductor [J]. Chinese Physics B, 2009, 18(12): 5212-5218. DOI:10.1088/1674-1056/18/12/018http://dx.doi.org/10.1088/1674-1056/18/12/018.
RAIESDANA S, GOPLAYEGANI S M H. Study on chaos anti-control for hippocampal models of epilepsy [J]. Neurocomputing, 2013, 111: 54-69. DOI:10.1016/j.neucom.2012.11.033http://dx.doi.org/10.1016/j.neucom.2012.11.033.
张荣标, 杨宁, 赵雨琦, 等. 微尺度电动混合混沌反控制方法[J]. 科学通报, 2013, 58(11): 1057-1062. DOI:10.1360/972012-999http://dx.doi.org/10.1360/972012-999.
ZHANG R B, YANG N, ZHAO Y Q, et al. Electrokinetically driven flow mixing in micro scale based on chaotic anti-control method [J]. Chinese Science Bulletin, 2013, 58(11): 1057-1062. DOI:10.1360/972012-999(Chhttp://dx.doi.org/10.1360/972012-999(Ch).
CHEN D S, WANG H O, CHEN G. Anti-control of Hopf bifurcations [J]. IEEE Transactions on Circuits and Systems Ⅰ: Fundamental Theory and Applications, 2001, 48(6): 661-672. DOI:10.1109/81.928149http://dx.doi.org/10.1109/81.928149.
WEI Z C, YANG Q G. Anti-control of Hopf bifurcation in the new chaotic system with two stable node-foci [J]. Applied Mathematics and Computation, 2010, 217(1): 422-429. DOI:10.1016/j.amc.2010.05.035http://dx.doi.org/10.1016/j.amc.2010.05.035.
刘素华, 唐驾时. 四维Qi系统零平衡点的Hopf分岔反控制[J]. 物理学报, 2008, 57(10): 6162-6168. DOI: 10.3321/j.issn:1000-3290.2008.10.018http://dx.doi.org/10.3321/j.issn:1000-3290.2008.10.018.
LIU S H, TANG J S. Anti-control of Hopf bifurcation at zero equilibrium of 4D Qi system [J]. Acta Physica Sinica, 2008, 57(10): 6162-6168. DOI: 10.3321/j.issn:1000-3290.2008.10.018(Chhttp://dx.doi.org/10.3321/j.issn:1000-3290.2008.10.018(Ch).
王志搴,唐驾时,罗迎社.索-梁耦合结构Hopf分岔的反控制[J].固体力学学报,2016,37(1): 90-94.
WANG Z Q,TANG J S,LUO Y S.Anti-control of Hopf bifurcation of cable-stayed beam[J].Chinese Journal of Solid Mechanics, 2016,37(1): 90-94(Ch).
伍新, 文桂林, 徐慧东, 等. 三自由度含间隙碰撞振动系统Neimark-Sacker分岔的反控制[J]. 物理学报, 2015, 64(20): 200504. DOI:10.7498/aps.64.200504http://dx.doi.org/10.7498/aps.64.200504.
WU X, WEN G L, XU H D, et al. Anti-controlling Neimark-Sacker bifurcation of a three-degree-of-freedom vibration system with clearance [J]. Acta Physica Sinica, 2015, 64(20): 200504. DOI:10.7498/aps.64.200504 (Chhttp://dx.doi.org/10.7498/aps.64.200504(Ch).
伍新,文桂林,徐慧东,等.惯性式冲击振动落砂机周期倍化分岔的反控制[J].固体力学学报,2015, 36(1):28-34.
WU X,WEN G L,XU H D,et al. Anti-controlling period-doubling bifurcation of an inertial impact shaker system [J]. Chinese Journal of Solid Mechanics, 2015, 36(1): 28-34(Ch).
MAY R M. Simple mathematical models with very complicated dynamics [J]. Nature, 1976, 261(5560): 459-467. DOI:10.1038/261459a0http://dx.doi.org/10.1038/261459a0.
0
浏览量
18
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构