1. 甘肃中医药大学 理科教学部,甘肃 定西 743000
李德奎,男,副教授,现从事混沌理论及其应用的研究。E-mail:dkli2009@163.com
纸质出版日期:2021-04-24,
收稿日期:2020-07-12,
扫 描 看 全 文
引用本文
李德奎.新四翼超混沌系统的电路仿真及其错位广义修正函数投影同步实现[J].武汉大学学报(理学版),2021,67(2):190-198.
LI Dekui.Circuit Simulation of New Four-Wing Hyperchaotic System and Its Dislocation Generalized Modified Function Projective Synchronization Realization [J].J Wuhan Univ (Nat Sci Ed),2021,67(2):190-198.
李德奎.新四翼超混沌系统的电路仿真及其错位广义修正函数投影同步实现[J].武汉大学学报(理学版),2021,67(2):190-198. DOI:10.14188/j.1671-8836.
LI Dekui.Circuit Simulation of New Four-Wing Hyperchaotic System and Its Dislocation Generalized Modified Function Projective Synchronization Realization [J].J Wuhan Univ (Nat Sci Ed),2021,67(2):190-198. DOI:10.14188/j.1671-8836.2020.0180(Ch).
为了增强混沌系统应用的电路基础,提高混沌保密通信的安全级别,研究新四翼超混沌系统的电路仿真及其错位广义修正函数投影同步问题。首先基于新四翼超混沌系统的状态方程,应用电路设计原理,搭建新四翼超混沌系统的仿真电路。然后提出混沌系统的错位广义修正函数投影同步,基于Lyapunov稳定性定理,构造自适应同步控制器及系统未知参数的辨识法则,实现新四翼超混沌系统的错位广义修正函数投影同步。最后数值仿真得到与理论分析相同的结果,并给出控制器的反馈增益系数向量与同步时间的关系。
In order to enhance the circuit foundation to chaotic system being applied and improve the security level of chaotic secret communication, the circuit simulation of a new four-wing hyperchaotic system and its dislocation generalized modified function projective synchronization(DGMFPS) are studied. Firstly, based on the state equations of the new four-wing hyperchaotic system, its simulation circuit is constructed by using the circuit design principle. Then the DGMFPS of chaotic system is proposed. Based on Lyapunov stability theorem, the adaptive synchronization controller and the identification rules of the system’s unknown parameters are constructed to implement the DGMFPS of the new four-wing hyperchaotic system. Finally, the numerical simulation results are the same as ones of the theoretical analysis, and the relationship is given between the feedback gain coefficient vector and the synchronization time.
新四翼超混沌系统电路仿真错位广义修正函数投影同步
a new four-wing hyperchaotic systemcircuit simulationdislocation generalized modified function projective synchronization(DGMFPS)
LIU W B, CHEN G R . A new chaotic system and its generation [J]. International Journal of Bifurcation and Chaos,2003,13(1):261-267.DOI:10.1142/S0218127403006509http://dx.doi.org/10.1142/S0218127403006509 .
SAPTARSHI D, ANISH A Y, INDRANIL P . Simulation studies on the design of optimum PID controllers to suppress chaotic oscillations in a family of Lorenz-like multi-wing attractors [J]. Mathematics and Computers in Simulation, 2014, 100: 72-87. DOI:10.1016/j.matcom.2014.03.002http://dx.doi.org/10.1016/j.matcom.2014.03.002 .
YU S M, LÜ J H, TANG W K S,et al . Generation of n×m-wing Lorenz-like attractors from a modified Shimizu-Morioka model [J]. IEEE Transactions on Circuits and Systems-Ⅱ, 2008, 55(11):1168-1172. DOI: 10.1109/TCSII.2008.2002563http://dx.doi.org/10.1109/TCSII.2008.2002563 .
YU S M, LÜ J H, CHEN G R, et al . Design and implementation of grid multiwing hyperchaotic Lorenz system family via switching control and constructing super-heteroclinic loops [J]. IEEE Transactions on Circuits and Systems-Ⅰ, 2012,59(5):1015-1028. DOI:10.1109/TCSI.2011.2180429http://dx.doi.org/10.1109/TCSI.2011.2180429 .
胡国四 . 超混沌吸引子的翼倍增方案[J]. 物理学报, 2009, 58(12):8139-8145. DOI:10.3321/j.issn:1000-3290.2009.12.004http://dx.doi.org/10.3321/j.issn:1000-3290.2009.12.004 .
HU G S . Scheme for doubling the number of wings in hyperchaotic attractors[J]. Acta Physica Sinica, 2009, 58(12):8139-8145. DOI:10.3321/j.issn:1000-3290.2009.12.004(Chhttp://dx.doi.org/10.3321/j.issn:1000-3290.2009.12.004(Ch ).
CHUA L O, ROSKA T . The CNN paradigm[J]. IEEE Transactions on Circuits and Systems Ⅰ:Fundamental Theory and Applications, 1993, 40(3):147-156. 10.1109/81.222795http://dx.doi.org/10.1109/81.222795
YALCIN M E,SUYKENS J A K,VANDEWALLE J,et al . Families of scroll grid attractors [J]. International Journal of Bifurcation and Chaos, 2002, 12(1):23-41. DOI:10.1142/S0218127402004164http://dx.doi.org/10.1142/S0218127402004164 .
LÜ J H,CHEN G R . Design and analysis of multi-scroll chaotic attractors from saturated function series[J]. IEEE Transactions on Circuits and Systems Ⅰ, 2004, 51(12):2476-2490. DOI:10.1109/TCSI.2004.838151http://dx.doi.org/10.1109/TCSI.2004.838151 .
罗明伟,罗小华,李华青 . 一类四维多翼混沌系统及其电路实现[J]. 物理学报, 2013, 62(2): 161-166. DOI:10.7498/aps.62.020512http://dx.doi.org/10.7498/aps.62.020512 .
LUO M W, LUO X H, LI H Q . A family of four-dimensional multi-wing chaotic system and its circuit implementation[J]. Acta Phys Sin, 2013, 62(2): 161-166. DOI: 10.7498/aps.62.020512(Chhttp://dx.doi.org/10.7498/aps.62.020512(Ch ).
安新磊,俞建宁,林明泽,等 .一个具有四翼的混沌吸引子的混沌系统的分析与同步控制[J]. 温州大学学报, 2010, 31(1):18-25. DOI:10.3875/j.issn.1674-3563.2010.01.004http://dx.doi.org/10.3875/j.issn.1674-3563.2010.01.004 .
AN X L, YU J N, LIN M Z, et al . Analysis and synchronic control of chaotic cystem with four-winged chaotic attractor[J]. Journal of Wenzhou University, 2010, 31(1):18-25. DOI:10.3875/j.issn.1674-3563.2010.01.004(Chhttp://dx.doi.org/10.3875/j.issn.1674-3563.2010.01.004(Ch ).
张晓丹, 高成 . 基于奇函数的一类四维四翼混沌系统设计与电路实现[J]. 北京科技大学学报, 2014, 36(5):680-687. DOI:10.13374/j.issn1001-053x.2014.05.017http://dx.doi.org/10.13374/j.issn1001-053x.2014.05.017 .
ZHANG X D,GAO C . Design and circuit implementation of a kind of 4D four-wing chaotic system based on the odd function [J]. Journal of University of Science and Technology Beijing, 2014, 36(5):680-687. DOI:10.13374/j.issn1001-053x.2014.05.017(Chhttp://dx.doi.org/10.13374/j.issn1001-053x.2014.05.017(Ch ).
WANG Z L, MA J, CANG S J, et al . Simplified hyper-chaotic systems generating multi-wing non-equilibrium attractors [J]. Optik, 2016, 127(5):2424-2431. DOI:10.1016/j.ijleo.2015.11.099http://dx.doi.org/10.1016/j.ijleo.2015.11.099 .
WANG Z, CHRISTOS V, SIFEU T K, et al . Four-wing attractors in a novel chaotic system with hyperbolic sine nonlinearity [J]. Optik, 2017, 131:1071-1078. DOI:10.1016/j.ijleo.2016.12.016http://dx.doi.org/10.1016/j.ijleo.2016.12.016 .
ZHANG S, ZENG Y C, LI Z J . One to four-wing chaotic attractors coined from a novel 3D fractional-order chaotic system with complex dynamics[J]. Chinese Journal of Physics, 2018, 56(3): 793-806. DOI: 10.1016/j.cjph.2018.03.002http://dx.doi.org/10.1016/j.cjph.2018.03.002 .
QI G Y, CHEN G R, MICHAËL A W, et al . A four-wing chaotic attractor generated from a new 3-D quadratic autonomous system[J]. Chaos, Solitons & Fractals, 2008, 38(3):705-721. DOI:10.1016/j.chaos.2007.01.029http://dx.doi.org/10.1016/j.chaos.2007.01.029 .
李德奎 . 一类多翼混沌吸引子系统的设计与仿真[J]. 宁夏大学学报(自然科学版), 2020, 41(1):33-37. DOI: 10.3969/j.issn.0253-2328.2020.01.007http://dx.doi.org/10.3969/j.issn.0253-2328.2020.01.007 .
LI D K . Design and simulation of a class of multi-wing chaotic attractors system [J]. Journal of Ningxia University (Natural Science Edition), 2020, 41(1):33-37. DOI: 10.3969/j.issn.0253-2328.2020.01.007(Chhttp://dx.doi.org/10.3969/j.issn.0253-2328.2020.01.007(Ch ).
PECORA L M, CARROLL T L . Synchronization in chaotic system[J]. Physical Review Letters, 1990, 64(4): 821-824.
WANG T, JIA N . Chaos control and hybrid projective synchronization of several new chaotic system [J]. Applied Mathematics and Computation, 2012, 218:7231-7240. DOI:10.1016/j.amc.2012.01.002http://dx.doi.org/10.1016/j.amc.2012.01.002 .
AGIZA H N . Chaos synchronization of Lü dynamical system[J]. Nonlinear Analysis, 2004, 58(1/2):11-20. DOI:10.1016/j.na.2004.04.002http://dx.doi.org/10.1016/j.na.2004.04.002 .
HOU J,HUANG Y L,REN S Y . Anti-synchronization analysis and pinning control of multi-weighted coupled neural networks with and without reaction-diffusion terms[J]. Neurocomputing, 2019, 330(22):78-93. DOI:10.1016/j.neucom.2018.10.079http://dx.doi.org/10.1016/j.neucom.2018.10.079 .
WANG Y W, GUAN Z H . Generalized synchronization of continuous chaotic system [J]. Chaos, Solitons & Fractals, 2006, 27(1):97-101. DOI:10.1016/j.chaos.2004.12.038http://dx.doi.org/10.1016/j.chaos.2004.12.038 .
LI C L, ZHANG M, ZHOU F, et al . Projective synchronization for a fractional-order chaotic system via single sinusoidal coupling [J]. Optik, 2016, 127(5): 2830-2836. DOI:10.1016/j.ijleo.2015.11.197http://dx.doi.org/10.1016/j.ijleo.2015.11.197 .
WANG C, ZHANG H L, FAN W H, et al . Finite-time function projective synchronization control method for chaotic wind power system[J]. Chaos, Solitons & Fractals, 2020, 135:1-12. DOI:10.1016/j.chaos.2020.109756http://dx.doi.org/10.1016/j.chaos.2020.109756 .
FANG J, LIU N, SUN J W, et al . Adaptive Modified function projective synchronization of uncertain complex dynamical networks with multiple time-delay couplings and disturbances [J]. Mathematical Problems in Engineering, 2018, 2018:1-11. DOI:10.1155/2018/6384757http://dx.doi.org/10.1155/2018/6384757 .
胡满峰,徐振源 .Lorenz混沌系统的非线性反馈错位同步控制[J].系统工程与电子技术,2007, 29(8):1346-1348. DOI:10.3321/j.issn:1001-506x.2007.08.032http://dx.doi.org/10.3321/j.issn:1001-506x.2007.08.032 .
HU M F, XU Z Y . Nonlinear feedback mismatch synchronization of Lorenz chaotic systems [J].Systems Engineering and Electronics, 2007, 29(8):1346-1348. DOI:10.3321/j.issn:1001-506x.2007.08.032(Chhttp://dx.doi.org/10.3321/j.issn:1001-506x.2007.08.032(Ch ).
ZHANG X Q, XIAO J, ZHANG Q . Dislocated projective synchronization between fractional-order chaotic systems and integer-order chaotic systems [J]. Optik, 2017, 130:1139-1150. DOI:10.1016/j.ijleo.2016.11.118http://dx.doi.org/10.1016/j.ijleo.2016.11.118 .
张莉,安新磊,张建刚 .一种完全错乱广义投影同步的新方法[J].河北师范大学学报(自然科学版),2012,36(5):461-466. DOI:10.13763/j.cnki.jhebnu.nse.2012.05.020http://dx.doi.org/10.13763/j.cnki.jhebnu.nse.2012.05.020 .
ZHANG L, AN X L, ZHANG J G . On a new method for complete dislocated general hybrid projective synchronization [J].Journal of Hebei Normal University (Natural Science Edition), 2012,36(5):461-466. DOI:10.13763/j.cnki.jhebnu.nse.2012.05.020(Chhttp://dx.doi.org/10.13763/j.cnki.jhebnu.nse.2012.05.020(Ch ).
SUN J W, WANG Y F, YAO L N, et al . General hybrid projective complete dislocated synchronization between a class of chaotic real nonlinear systems and a class of chaotic complex nonlinear systems [J]. Applied Mathematical Modelling, 2015, 39(20):6150-6164. DOI:10.1016/j.apm.2015.01.049http://dx.doi.org/10.1016/j.apm.2015.01.049 .
李德奎 . 一个新超混沌Lorenz系统的Hopf分岔及电路实现[J]. 宁夏大学学报(自然科学版), 2016, 37(3):294-301. DOI:10.3969/j.issn.0253-2328.2016.03.011http://dx.doi.org/10.3969/j.issn.0253-2328.2016.03.011 .
LI D K . Hopf bifurcation and circuit implementation of a new hyperchaotic Lorenz system[J]. Journal of Ningxia University (Natural Science Edition), 2016, 37(3):294-301. DOI:10.3969/j.issn.0253-2328.2016.03.011(Chhttp://dx.doi.org/10.3969/j.issn.0253-2328.2016.03.011(Ch ).
闵颖颖,刘允刚 . Barbalat引理及其在系统稳定性分析中的应用[J]. 山东大学学报(工学版), 2007, 37(1):51-55. DOI: 10.3969/j.issn.1672-3961.2007.01.013http://dx.doi.org/10.3969/j.issn.1672-3961.2007.01.013 .
MIN Y Y, LIU Y G . Barbalat lemma and its application in analysis of system stability[J]. Journal of Shandong University(Engineering Science), 2007, 37(1):51-55. DOI:10.3969/j.issn.1672-3961.2007.01.013(Chhttp://dx.doi.org/10.3969/j.issn.1672-3961.2007.01.013(Ch ).
0
浏览量
11
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构