1.桂林理工大学 理学院,广西 桂林 541004
李书燕,女,硕士生,现从事概率极限理论研究。E-mail:920993455@qq.com
E-mail: wqy666@glut.edu.cn
纸质出版日期:2021-04-24,
收稿日期:2020-09-10,
扫 描 看 全 文
引用本文
李书燕,吴群英.次线性期望空间下END阵列加权和的完全积分收敛[J].武汉大学学报(理学版),2021,67(2):165-172.
LI Shuyan,WU Qunying.Complete Integration Convergence for Weighted Sums of Arrays of END Under Sub-Linear Expectations Space [J].J Wuhan Univ (Nat Sci Ed),2021,67(2):165-172.
李书燕,吴群英.次线性期望空间下END阵列加权和的完全积分收敛[J].武汉大学学报(理学版),2021,67(2):165-172. DOI:10.14188/j.1671-8836.2020.0221
LI Shuyan,WU Qunying.Complete Integration Convergence for Weighted Sums of Arrays of END Under Sub-Linear Expectations Space [J].J Wuhan Univ (Nat Sci Ed),2021,67(2):165-172. DOI:10.14188/j.1671-8836.2020.0221(Ch).
研究次线性期望空间下END(extended negatively dependent)阵列加权和的完全积分收敛性,将概率空间中END阵列加权和的完全矩收敛推广到次线性期望空间下的完全积分收敛。
We study the complete integration convergence for weighted sums of arrays of row-wise END (extended negatively dependent) under sub-linear expectations space. The complete moment convergence of the weighted sum of the END sequence in the probability space is extended to the complete integral convergence of the sub-linear expectations space.
次线性期望完全积分收敛加权和END(extended negatively dependent)阵列
sub-linear expectationscomplete integration convergenceweighted sumsarrays of END(extended negatively dependent)
PENG S G. Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation [J]. Stochastic Processes and Their Applications, 2008, 118(12): 2223-2253. DOI:10.1016/j.spa.2007.10.015http://dx.doi.org/10.1016/j.spa.2007.10.015.
PENG S G. A new central limit theorem under sub-linear expectations [EB/OL]. [2008-12-13]. https://arxiv.org/abs/0803.2656https://arxiv.org/abs/0803.2656. DOI: 10.1007/s11425-010-3156-yhttp://dx.doi.org/10.1007/s11425-010-3156-y.
ZHANG L X. Strong limit theorems for extended independent and extended negatively dependent random variables under non-linear expectations [EB/OL]. [2020-02-13]. https://arxiv.org/abs/1608.00710https://arxiv.org/abs/1608.00710. 10.2298/fil1507541zhttp://dx.doi.org/10.2298/fil1507541z
ZHANG L X. Exponential inequalities under the sub-linear expectations with applications to laws of the iterated logarithm[J]. Science China Mathematics, 2016, 59(12): 2503-2526. DOI:10.1007/s11425-016-0079-1http://dx.doi.org/10.1007/s11425-016-0079-1.
ZHANG L X. The convergence of the sums of independent random variables under the sub-linear expectations [J]. Acta Mathematica Sinica, 2020, 36(3): 224–244. DOI: 10.1007/s10114-020-8508-0http://dx.doi.org/10.1007/s10114-020-8508-0.
WANG W J, WU Q Y. Almost sure convergence of weighted sums for extended negatively dependent random variables under sub-linear expectations [J]. Mathematica Applicata, 2019, 32(2): 382-391. DOI:10.13642/j.cnki.42-1184/o1.2019.02.034http://dx.doi.org/10.13642/j.cnki.42-1184/o1.2019.02.034.
FENG F X, WANG D C, WU Q Y. Complete convergence for weighted sums of negatively dependent random variables under the sub-linear expectations [J]. Communication in Statistics Theory and Methods, 2019, 48(6): 1351-1366. DOI:10.1080/03610926.2018.1429632http://dx.doi.org/10.1080/03610926.2018.1429632.
LIN Y W, FENG X W. Complete convergence and strong law of large numbers for arrays of random variables under sub-linear expectations [J]. Communication in Statistics Theory and Methods, 2019, 49(23): 5866-5882. DOI:10.1080/03610926.2019.1625924http://dx.doi.org/10.1080/03610926.2019.1625924.
FENG X, LAN Y. Strong limit theorems for arrays of row-wise independent random variables under the sub-linear expectations[J]. Communication in Statistics Theory and Methods, 2019, 159(1): 299-322. DOI:10.1007/s10474-019-00938-1http://dx.doi.org/10.1007/s10474-019-00938-1.
WU Q Y, LU J F. Another form of Chover’s law of the iterated logarithm under sub-linear expectations [J]. The Royal Academy of Sciences, 2020, 114(1): 22. DOI:10.1007/s13398-019-00757-7http://dx.doi.org/10.1007/s13398-019-00757-7.
HSU P L, ROBBINS H. Complete convergence and the law of large numbers [J]. Proceedings of the National Academy of Sciences of the United States of America, 1947, 33(2): 25-31. DOI: 10.2307/87477http://dx.doi.org/10.2307/87477.
CHOW Y S. On the rate of moment complete convergence of sample sums and extremes [J]. Bull Instmath Acad Sinica, 1988,16(3): 177-201.
WU Y F, GUAN M. Convergence properties of the partial sums for sequences of END random variables [J]. Journal of the Korean Mathematical Society, 2012, 49(6): 1097-1110. DOI:10.4134/jkms.2012.49.6.1097http://dx.doi.org/10.4134/jkms.2012.49.6.1097.
WANG W J, WU Q Y. Complete convergence for arrays of row-wise ND random variables under sub-linear expectations [J]. Communications in Statistics - Theory and Methods, 2019, 48(13): 3165-3176. DOI:10.1080/03610926.2018.1476711http://dx.doi.org/10.1080/03610926.2018.1476711.
SHEN A T, XUE M X, WANG W J. Complete convergence for weighted sums of extended negatively dependent random variables[J]. Communications in Statistics - Theory and Methods, 2017, 46(3): 1433-1444. DOI:10.1080/03610926.2015.1019147http://dx.doi.org/10.1080/03610926.2015.1019147.
DING Y, WU Y, MA S L, et al. Complete convergence and complete moment convergence for widely orthant-dependent random variables [J]. Communications in Statistics - Theory and Methods, 2017, 46(16): 8278-8294. DOI:10.1080/03610926.2016.1177085http://dx.doi.org/10.1080/03610926.2016.1177085.
ZHONG H Y, WU Q Y. Complete convergence and complete moment convergence for weighted sums of extended negatively dependent random variables under sub-linear expectation [J]. Journal of Inequalities and Applications, 2017, 2017(1):1-14. DOI:10.1186/s13660-017-1538-1http://dx.doi.org/10.1186/s13660-017-1538-1.
0
浏览量
19
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构