1.上海财经大学 数学学院,上海 200433
2.上海财经大学 浙江学院,浙江 金华321013
汤健儿,男,副教授,现从事代数与数论研究。E-mail:1277708824@qq.com
E-mail:qxhe@mail.shufe.edu.cn
纸质出版日期:2021-04-24,
收稿日期:2020-09-29,
扫 描 看 全 文
引用本文
汤健儿,何其祥.五次循环域的生成元[J].武汉大学学报(理学版),2021,67(2):143-150.
TANG Jianer,HE Qixiang.Generators of Quintic Cyclic Field [J].J Wuhan Univ (Nat Sci Ed),2021,67(2):143-150.
汤健儿,何其祥.五次循环域的生成元[J].武汉大学学报(理学版),2021,67(2):143-150. DOI:10.14188/j.1671-8836.2020.0237
TANG Jianer,HE Qixiang.Generators of Quintic Cyclic Field [J].J Wuhan Univ (Nat Sci Ed),2021,67(2):143-150. DOI:10.14188/j.1671-8836.2020.0237(Ch).
五次循环域,,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46290849&type=,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46290847&type=,3.89466667,2.37066674,作为分圆域,,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46290852&type=,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46290850&type=,9.48266697,5.33399963,的子域,当,,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46290855&type=,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46290854&type=,2.45533323,2.37066674,是单因子,即为,,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46290732&type=,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46290857&type=,7.28133297,3.13266659,(mod 5)类型素数或等于25 时,构建了,,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46290884&type=,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46290858&type=,3.21733332,2.37066674,的定义方程,并利用多个单因子域之生成元相合成的方法,对其他情形即,,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46290861&type=,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46290885&type=,2.45533323,2.37066674,是多因子时,给出了,,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46290864&type=,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46290886&type=,3.21733332,2.37066674,的生成元。
Quintic cyclic field,,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46290866&type=,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46290888&type=,3.72533321,2.37066674, is regarded as a subfield of cyclotomic field ,,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46290892&type=,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46290890&type=,9.48266697,5.33399963,. The defining equation of ,K, is constructed if ,,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46290899&type=,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46290867&type=,2.45533323,2.37066674, is a simple factor (it means ,,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46290902&type=,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46290900&type=,7.28133297,3.13266659,(mod 5) type prime number or 25). The generators of ,K, are given by combining the generators of multiple single factors when ,m, is a multiple factor.
循环和单因子循环域多因子循环域共生矩阵
cyclic sumcyclic field of simple factorcyclic field of multiple factorconjugate matrix
MÄKI S. The Determination of Units in Real Cyclic Sextic Fields (LNM797)[M].Berlin:Springer-Verlag,1980.
李德琅.三次循环域的定义方程及迹型[J]. 中国科学A辑, 1988, 7:698-706. 10.1103/PhysRevB.85.125126http://dx.doi.org/10.1103/PhysRevB.85.125126
LI D L. The defining equation and trace form of cubic cyclic fields [J]. Science in China(Series A), 1988, 7:698-706(Ch). 10.1103/PhysRevB.85.125126http://dx.doi.org/10.1103/PhysRevB.85.125126
汤健儿.有理数域的三次循环扩张[J]. 数学学报, 1992, 35(5):696-703. cnki:ISSN:0583-1431.0.1992-05-014http://dx.doi.org/cnki:ISSN:0583-1431.0.1992-05-014
TANG J E. The cubic cyclic extensions of rational number fields [J]. Acta Mathematica Sinica(Chinese Series), 1992, 35(5):696-703(Ch). cnki:ISSN:0583-1431.0.1992-05-014http://dx.doi.org/cnki:ISSN:0583-1431.0.1992-05-014
冯克勤.四次循环域的明显刻划[J]. 数学学报, 1984, 27(3):410-424. DOI: cnki:ISSN:0583-1431.0.1984-03-011http://dx.doi.org/cnki:ISSN:0583-1431.0.1984-03-011.
FENG K Q. The obvious characterization of the quartic cyclic fields [J]. Acta Mathematica Sinica, 1984, 27(3):410-424. DOI: cnki:ISSN:0583-1431.0.1984-03-011(Chhttp://dx.doi.org/cnki:ISSN:0583-1431.0.1984-03-011(Ch).
张贤科.四次循环域的相对整基[J]. 数学学报, 1984, 27(3):425-432. DOI: cnki:ISSN:0583-1431.0.1984-03-012http://dx.doi.org/cnki:ISSN:0583-1431.0.1984-03-012.
ZHANG X K. The relative integral bases of the quartic cyclic fields [J]. Acta Mathematica Sinica, 1984, 27(3):425-432. DOI: cnki:ISSN:0583-1431.0.1984-03-012(Chhttp://dx.doi.org/cnki:ISSN:0583-1431.0.1984-03-012(Ch).
TANG J E. Quartic normal extensions of the rational field[J]. Journal of the Australian Mathematical Society Series A Pure Mathematics and Statistics, 1991, 51(3): 473-482. DOI:10.1017/s1446788700034637http://dx.doi.org/10.1017/s1446788700034637.
潘伟云.广义四元数群的循环扩张[J]. 太原师范学院学报(自然科学版), 2014,13(4):20-21.
PAN W Y. The cyclic extensions of generalized quaternion groups [J].http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46294065&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46294064&type=0.677333352.28600001Journal of Taiyuan Normal University (Natural Science Edition), 2014, 13(4):20-21(Ch).
蓝以中.数域上两个三次循环扩域的复合域[J]. 科学通报, 1992, 37(15):1348-1350. 10.1360/csb1992-37-15-1348http://dx.doi.org/10.1360/csb1992-37-15-1348
LAN Y Z. The compound field of two cubic cyclic extended fields over a number field [J]. Chinese Science Bulletin, 1992, 37(15):1348-1350(Ch). 10.1360/csb1992-37-15-1348http://dx.doi.org/10.1360/csb1992-37-15-1348
赵正俊,孙广人.循环数域导子的一点注记[J]. 数学学报(中文版), 2016, 59(6):761-766.
ZHAO Z J, SUN G R. A note on the conductor of cyclic number fields [J].http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46294067&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46294058&type=0.677333352.28600001Acta Mathematica Sinica(Chinese Series), 2016,59(6):761-766(Ch).
黄天培. http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46294071&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46294059&type=1.523999932.96333337次循环扩张http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46294093&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46294074&type=5.842000012.87866688[J]. 四川大学学报(自然科学版), 1990, 27(2):121-129.
HUANG T P. http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46294095&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46294062&type=1.523999932.96333337⁃th cyclic extensions over http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46294097&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46294096&type=5.842000012.87866688 [J].http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46294114&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46294112&type=0.677333352.28600001Journal of Sichuan University (Natural Science Edition), 1990, 27(2):121-129(Ch).
汤健儿,汤卓立.用http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46294102&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46294116&type=4.233333595.07999992表示丢番图方程http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46294119&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46294103&type=19.473333363.21733332的整数解[J].四川大学学报(自然科学版), 2013, 50(4):689-692. DOI: 10.3969/j.issn.0490-6756.2013.04.005http://dx.doi.org/10.3969/j.issn.0490-6756.2013.04.005.
TANG J E, TANG Z L. Use http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46294124&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46294107&type=4.233333595.07999992 to present the integer solution of Diophantine equation http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46294126&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46294122&type=19.473333363.21733332 [J]. Journal of Sichuan University (Natural Science Edition), 2013, 50(4):689-692. DOI: 10.3969/j.issn.0490-6756.2013.04.005(Chhttp://dx.doi.org/10.3969/j.issn.0490-6756.2013.04.005(Ch).
汤健儿,何其祥.关于丢番图方程http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46294130&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46294128&type=14.901332863.21733332和http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46294133&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46294142&type=16.425333023.21733332的整数解[J].数学的实践与认识, 2019, 49(37):230-238.
TANG J E, HE Q X. On the integer solutions of diophantine equations http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46294146&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46294144&type=14.901332863.21733332 and http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46294151&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=46294149&type=16.425333023.21733332 [J].Mathematics in Practice and Theory, 2019, 49(37):230-238.(Ch).
华罗庚.数论导引[M].北京:科学出版社,1979.
HUA L G. Introduction to Number Theory [M]. Beijing: Science Press, 1979(Ch).
0
浏览量
26
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构