1.兰州交通大学 数理学院,甘肃 兰州 730070
2.甘肃财贸职业学院 信息技术系,甘肃 兰州730207
康笑东,男,硕士生,现从事非线性发展方程方面的研究。E-mail:kangxiaodong95@163.com
纸质出版日期:2021-04-24,
收稿日期:2021-01-16,
扫 描 看 全 文
引用本文
康笑东,邵勇,范虹霞.具有结构阻尼的弹性系统的近似可控性[J].武汉大学学报(理学版),2021,67(2):151-157.
KANG Xiaodong,SHAO Yong,FAN Hongxia.Approximate Controllability of Elastic Systems with Structural Damping [J].J Wuhan Univ (Nat Sci Ed),2021,67(2):151-157.
康笑东,邵勇,范虹霞.具有结构阻尼的弹性系统的近似可控性[J].武汉大学学报(理学版),2021,67(2):151-157. DOI:10.14188/j.1671-8836.2021.0011
KANG Xiaodong,SHAO Yong,FAN Hongxia.Approximate Controllability of Elastic Systems with Structural Damping [J].J Wuhan Univ (Nat Sci Ed),2021,67(2):151-157. DOI:10.14188/j.1671-8836.2021.0011(Ch).
在Banach空间中研究具有结构阻尼的弹性系统的近似可控性。利用Banach压缩映像原理、Schauder不动点定理, 研究了具有控制项的阻尼弹性控制系统mild解的存在唯一性;同时,利用算子半群理论并结合值域型条件, 通过构造收敛的序列, 获得了具有结构阻尼的弹性系统的近似可控性,丰富和发展了阻尼弹性系统已有的结果。
In this paper, we study the approximate controllability of elastic systems with structural damping in Banach spaces. By using the principle of the Banach contractive mapping and the Schauder fixed point theorem, we study the existence and uniqueness of mild solutions of damped elastic control systems with control terms. At the same time, by using the theory of operator semigroup and combining the conditions of value domain types, we construct a convergent sequence, and obtain the approximate controllability of elastic systems with structural damping, which enriches and develops the existing results of damped elastic systems.
结构阻尼近似可控性不动点mild解
structural dampingapproximate controllabilityfixed pointmild solution
KALMAN R E. Controllablity of linear dynamical systems [J]. Contribute Different Equcation, 1963, 1:190-213. DOI: 10.1111/j.1548-1352.2009.01054.xhttp://dx.doi.org/10.1111/j.1548-1352.2009.01054.x.
MCKIBBEN M A. Approximate controllability for a class of abstract second-order functional evolution equations [J]. Journal of Optimization Theory and Applications, 2003, 117(2):397-414. DOI:10.1023/A:1023639908792http://dx.doi.org/10.1023/A:1023639908792.
HENRIQUEZ H R, HERNANDEZ E. Approximate controllability of second-order distributed implicit functional systems[J]. Nonlinear Analysis, 2008, 70(2):1023-1039. DOI:10.1016/j.na.2008.01.029http://dx.doi.org/10.1016/j.na.2008.01.029.
MAHMUDOV N I. Approximate controllability of evolution systems with nonlocal conditions[J]. Nonlinear Analysis, 2008, 68:536-546. DOI:10.1016/j.na.2006.11.018http://dx.doi.org/10.1016/j.na.2006.11.018.
MOKKEDEM F Z, FU X L. Approximate controllability of semi-linear neutral integro-differential systems with finite delay[J]. Applied Mathematics and Computation, 2014, 242:202-215. DOI:10.1016/j.amc.2014.05.055http://dx.doi.org/10.1016/j.amc.2014.05.055.
FU X L, RONG H. Approximate controllability of semilinear non-autonomous evolutionary systems with nonlocal conditions [J]. Automation and Remote Control, 2016, 77(3):428-442. DOI:10.1134/S000511791603005Xhttp://dx.doi.org/10.1134/S000511791603005X.
FU X L. Approximate controllability of semilinear non-autonomous evolution systems with state dependent delay [J]. Evolution Equations and Control Theory, 2017, 6(4):517-534. DOI:10.3934/eect.2017026http://dx.doi.org/10.3934/eect.2017026.
CHEN P Y, ZHANG X P, LI Y X. Approximate controllability of non-autonomous evolution system with nonlocal conditions[J]. Journal of Dynamical and Control Systems, 2020, 26(6):1-16. DOI:10.1007/s10883-018-9423-xhttp://dx.doi.org/10.1007/s10883-018-9423-x.
PAZY A. Semigroups of Linear Operators and Applications to Partial Differential Equations [M]. New York: Springer, 1983. 10.1007/978-1-4612-5561-1_7http://dx.doi.org/10.1007/978-1-4612-5561-1_7
PARK J Y, HAN H K. Approximate controllability of second-order integro-differential systems [J]. Indian Journal of Pure and Applied Mathematics, 1998, 29(9):941-950.
ZHOU H X. Approximate controllability for a class of semilinear abstract equations [J]. Siam Journal on Control & Optimization, 1983, 21(4):551-565. DOI:10.1137/0321033http://dx.doi.org/10.1137/0321033.
BALASUBRAMANIAM P, MUTHUKUMAR P. Approximate controllability of second-order stochastic distributed implicit functional differential systems with infinite delay [J]. Journal of Optimization Theory and Applications, 2009, 143(2):225-244. DOI:10.1007/s10957-009-9564-xhttp://dx.doi.org/10.1007/s10957-009-9564-x.
SANJUKTA D, DWIJENDRA P, SUKAVANAM N. Existence of solution and approximate controllability of a second-order neutral stochastic differential equation with state dependent delay[J]. Acta Mathematica Scientia, 2016, 36(5): 1509-1523. DOI:10.1016/S0252-9602(16)30086-8http://dx.doi.org/10.1016/S0252-9602(16)30086-8.
CHEN P Y, ZHANG X P, LI Y X. Existence and approximate controllability of fractional evolution equations with nonlocal conditions via resolvent operators [J]. Fractional Calculus and Applied Analysis, 2020, 23(1):268⁃291. DOI:10.1515/fca-2020-0011http://dx.doi.org/10.1515/fca-2020-0011.
FAN H X, LI Y X, CHEN P Y. Existence of mild solutions for the elastic systems with structural damping in Banach spaces [J]. Abstract and Applied Analysis, 2013:746893. DOI:10.1155/2013/746893http://dx.doi.org/10.1155/2013/746893.
FAN H X, LI Y X. Analyticity and exponential stability of semigroups for the elastic systems with structural damping in Banach spaces [J]. Journal of Mathematical Analysis and Applications, 2014, 410(1):316-322. DOI:10.1016/j.jma a.2013.08.028http://dx.doi.org/10.1016/j.jmaa.2013.08.028.
FAN H X, LI Y X. Monotone iterative technique for the elastic systems with structural damping in Banach spaces [J]. Computers and Mathematics with Applications, 2014, 68(3):384-391. DOI:10.1016/j.camwa.2014.06.009http://dx.doi.org/10.1016/j.camwa.2014.06.009.
FAN H X, GAO F. Asymptotic stability of solutions to elastic systems with structural damping [J]. Electronic Journal of Differential Equations, 2014, 2014(245):1-9.
0
浏览量
21
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构