摘要:电力通信网设备时序故障预测的目标是通过过去设备告警数据,预测设备在下一个时间段是否发生故障,这对设备的管理和维护起着重要作用。为了预测电力设备未来的状态,提出一种Forward⁃LSTM(F⁃LSTM)学习模型,对设备故障的时序特征和非时序特征(静态信息)进行并行训练,探索出一种新的对静态⁃时序数据的训练方法,将其应用在电力通信网故障预测中。F⁃LSTM结合了两个组件,一个学习时序特征的长短期记忆神经网络(LSTM)与一个处理静态数据的前向全连接神经网络(forward full connection neural networks,FC),数据的静态/时序属性被自动判断并传递给FC或LSTM来并行训练。对于具有同时产生动态数据与静态数据的电力通信网络,Forward⁃LSTM(F⁃LSTM)模型能以较高速度与精度预测其故障发生的位置。此外,本文采用一种加权的损失函数,可以更好地捕捉设备故障的时序规律。选取某电力通信网络系统中2016—2017年设备故障数据,对本方法进行测试。实验结果显示,与Xgboost模型相比,F⁃LSTM模型对故障预测的召回率提高5%,同时F⁃LSTM模型较LSTM模型缩减了计算量,加快了模型的训练速度。
摘要:文本情绪原因识别是情感分析中一个新的研究方向,旨在从文本中自动检测出导致某一情绪产生的原因。针对循环神经网络在长文中出现的长期依赖问题,本文提出了一种基于注意力机制和双向长短时记忆(attention model and bi⁃directional long short⁃term memory,AM⁃BiLSTM)神经网络模型的情绪原因识别方法。该方法采用字符向量表示文本语义信息,使用BiLSTM模型提取文本特征,该过程结合了人工提取的子句特征,在训练模型时,引入了注意力机制来优化模型性能,使用softmax对子句进行分类。实验结果表明本文方法对情绪原因的识别是有效的。